|
|
The application of wide field electromagnetic method to deep exploration in Jiaoxibei (northwest Shandong) gold concentration area |
WANG Hong-Jun1,2( ), XIONG Yu-Xin3 |
1.Shandong Geophysical and Geochemical Exploration Institute, Jinan 250013, China 2.Shandong Geological Exploration Engineering Technology Research Center, Jinan 250013, China 3.Shandong Geological Science Research Institute, Jinan 250013, China |
|
|
Abstract Jiaojia and Sanshandao fault zones are famous gold ore-forming zones in Jiaoxibei region. In recent years, the deep exploration results are remarkable. At present, the borehole has reached the depth of 4 006 m. The previous geophysical exploration methods have poor deep exploration effect, so effective deep exploration geophysical technology is urgently needed. The wide field electromagnetic method is applied to the known section of Jiaojia and Sanshandao fault zones. The section reveals that the characteristics of the low resistance zone formed by the two major fault zones are obvious, which truly reflects the distribution of underground electricity; the distribution of apparent resistivity high resistance and low resistance reflects the distribution of Linglong granite body and metamorphic rock mass; meanwhile, the section clearly shows the intersection of the two major faults at a depth of 4 km. The section provides the basis for the fault characteristics between Sanshandao and Jiaojia faults. The application test shows that the wide area electromagnetic method has a large detection depth and strong anti-interference capability, and hence it is a good non-seismic geophysical method for detecting the low resistance fault zone in the magmatic rock distribution area of Jiaoxibei region.
|
Received: 16 May 2020
Published: 26 October 2020
|
|
|
|
|
|
Geological and gold distribution of Jiaodong ore concentration area
|
|
Geological and mineral map and section layout of the study area 1—Quaternary;2—Cretaceous granodiorite of Guojialing sequence;3—Jurassic biotite monzonitic granite of Linglong sequence;4—Neoarchean tonalitic gneiss of Qixia sequence;5—Neoarchean medium fine grained metagabbro of Malianzhuang sequence (plagioclase amphibolite);6—quartz vein;7—diorite porphyrite vein;8—alteration zone;9—measured and inferred faults;10—drilling number and depth;11—gold deposits;12—wide field electromagnetic profile
|
岩(矿)石分类 | 岩(矿)石名称 | 标本块数 | ρ/(Ω·m) | 平均值 | 变化范围 | 变质岩 | 混合岩化黑云斜长片麻岩 | 73 | 3693 | 533~7815 | 变质岩 | 黑云斜长角闪岩 | 20 | 2630 | 1240~4650 | 变质岩 | 斜长角闪岩 | 150 | 534 | 5690~50 | 变质岩 | 黑云斜长片麻岩 | 54 | 941 | 3060~116 | 变质岩 | 斜长角闪片麻岩 | 98 | 400 | | 变质岩 | 黑云片岩 | 30 | 559 | 1090~237 | 侵入岩 | 黑云母花岗岩 | 15 | 2970 | 203~8100 | 侵入岩 | 花岗闪长岩 | 108 | 4250 | 625~7470 | 蚀变岩 | 绢英岩化碎裂状花岗岩 | 42 | 829 | 580~2830 | 蚀变岩 | 绢英岩化花岗质碎裂岩 | 117 | 1450 | 218~9900 | 蚀变岩 | 斜长角闪岩(弱矿化) | 188 | 319 | 50~606 | 蚀变岩 | 黄铁绢英岩化糜棱岩 | 30 | 86.9 | 41.5~209 | 蚀变岩 | 黄铁矿化蚀变岩 | 92 | 335 | 78.0~578 | 蚀变岩 | 黄铁绢英岩化碎裂状花岗岩 | 51 | 960 | 275~3310 | 矿石 | 金矿石(新城金矿) | 56 | 1740 | 218~7420 | 矿石 | 金矿石(焦家金矿) | 48 | 1220 | 176~5230 | | 第四系黄土 | 6 | 50 | 70~30 |
|
Statistical table of main rock (ore) electrical parameters in the study area
|
|
Schematic diagram of wide field electromagnetic work layout
|
|
Data processing and interpretation flow chart of wide field electromagnetic method
|
|
Qualitative analysis diagram of wide field electromagnetic of GY-01 line
|
|
Inversion and interpretation of wide field electromagnetic method of GY-01 line 1—Quaternary;2—Jurassic biotite monzonitic granite of Linglong sequence;3—Neoarchean tonalitic gneiss of Qixia sequence;4—Neoarchean medium fine grained metagabbro of Malianzhuang sequence (plagioclase amphibolite);5—measured and inferred faults;6—gold bearing alteration zone;7—inferred gold bearing alteration zone;8—drilling location and number;9—drilling depth(m)
|
[1] |
吕庆田, 张晓培, 汤井田, 等. 金属矿地球物理勘探技术与设备:回顾与进展[J]. 地球物理学报, 2019,62(10):3629-3664.
|
[1] |
Lyu Q T, Zhang X P, Tang J T, et al. Review on advancement in technology and equipment of geophysical exploration for metallic deposits in china[J]. Chinese Journal of Geophysics, 2019,62(10):3629-3664.
|
[2] |
何继善. 大深度高精度广域电磁勘探理论与技术[J]. 中国有色金属学报, 2019,29(9):1809-1816.
|
[2] |
He J S. Theory and technology of wide area electromagnetic exploration with large depth and high precision[J]. The Chinese Journal of Nonferrous Metals, 2019,29(9):1809-1816.
|
[3] |
何继善, 李帝铨. 深地探测尖兵——广域电磁法[J]. 国土资源科普与文化, 2019(3):4-9.
|
[3] |
He J S, Li D Q. Deep exploration spear—Wide area electromagnetic method[J]. Science Popularization and Culture of Land and Resources, 2019(3):4-9.
|
[4] |
李帝铨. E-Ex和E-Eφ广域电磁法测量范围[J]. 石油地球物理勘探, 2017,52(6):1315-1323.
|
[4] |
Li D Q. Measurment range of E-Ex and E-Eφ wide field electromagnetic[J]. OGP, 2017,52(6):1315-1323.
|
[5] |
索光运, 李帝铨, 胡艳芳. 基于解析雅克比矩阵的E-Ex广域电磁法一维并行约束反演[J]. 物探化探计算技术, 2019,41(1):55-61.
|
[5] |
Suo G Y, Li D Q, Hu Y F. One-dimension parallel constrained inversion of E-Ex wide field electromagnetic method based on analytical jacobian matrix[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019,41(1):55-61.
|
[6] |
刘嘉文, 裴婧, 李帝铨. 广域电磁法反演方案评估[J]. 工程地球物理学报, 2018,15(4):492-500.
|
[6] |
Liu J W, Pei J, Li D Q. Inversion scheme evaluation of wide-field electromagnetic method[J]. Chinese Journal of Engineering Geophysics, 2018,15(4):492-500.
|
[7] |
吴桐, 李帝铨, 索光运, 等. 广义S变换时频分析在广域电磁法数据处理中的应用[J]. 物探化探计算技术, 2019,41(3):379-385.
|
[7] |
Wu T, Li D Q, Suo G Y, et al. Application of time-frequency analysis of generalized S-transform in data processing of wide area electromagnetic method[J]. Calculation Technology of Geophysical and Geochemical Exploration, 2019,41(3):379-385.
|
[8] |
李帝铨, 胡艳芳. 强干扰矿区中广域电磁法与CSAMT探测效果对比[J]. 物探与化探, 2015,39(5):967-972.
|
[8] |
Li D Q, Hu Y F. A comparison of wide field electromagnetic method with CSAMT method in strong interferential mining area[J]. Geophysical and Geochemical Exploration, 2015,39(5):967-972.
|
[9] |
于学峰, 杨德平, 李大鹏, 等. 胶东焦家金矿带3 000 m深部成矿特征及其地质意义[J]. 岩石学报, 2019,35(9):2893-2910.
|
[9] |
Yu X F, Yang D P, Li D P, et al. Mineralization characteristics and geological significance in 3 000 m depth of Jiaojia gold metallogenic belt,Jiaodong Peninsula[J]. Acta Petrologica Sinica, 2019,35(9):2893-2910.
|
[10] |
宋明春, 伊丕厚, 崔书学, 等. 胶东金矿“热隆—伸展”成矿理论及其找矿意义[J] . 山东国土资源, 2013,29(7):1-12.
|
[10] |
Song M C, Yi P H, Cui S X, et al. Metallogenic theory of “thermal uplift extension” in Jiaodong gold deposit and its prospecting significance[J]. Shandong Land and Resources, 2013,29(7):1-12.
|
[11] |
熊玉新, 于学峰, 迟乃杰, 等. 焦家金矿带3000m科研深钻地球物理测井及初步分析[J]. 山东国土资源 2018,34(5):66-73.
|
[11] |
Xiong Y X, Yu X F, Chi N J, et al. Geophysical logging and primary analysis of scientific research deep drilling at the depth of 3 000 m in Jiaojia gold belt[J]. Shandong Land and Resources, 2018,34(5):66-73.
|
[12] |
孙求实, 袁杰, 宗文明, 等. 广域电磁法在辽西地区牛营子凹陷油气资源潜力评价中的应用[J]. 物探与化探, 2019,43(1):64-69.
|
[12] |
Sun Q S, Yuan J, Zong W M, et al. The application of wide field electromagnetic method to the oil and gas exploration of Niuyingzi sag in Liaoxi area[J]. Geophysical and Geochemical Exploration, 2019,43(1):64-69.
|
[13] |
孙春岩, 唐侥, 赵浩, 等. 广域电磁法在洞庭盆地北部生物气勘探中应用及远景靶区预测[J]. 地学前缘, 2018,25(4):210-225.
|
[13] |
Sun C Y, Tang R, Zhao H, et al. Application of wide area electromagnetic method in biogas exploration in the north of Dongting Basin and prediction of prospective target area[J]. Earth Science Frontier, 2018,25(4):210-225.
|
[14] |
孟凡洋, 包书景, 陈科, 等. 基于广域电磁法的页岩气有利区预测——以渝东北巫山地区为例[J]. 物探与化探, 2018,42(1):68-74.
|
[14] |
Meng F Y, Bao S J, Chen K, et al. The prediction of shale gas favorable area based on wide area electromagnetic method: A case study of Wushan area in northeast Chongqing[J]. Geophysical and Geochemical Exploration, 2018,42(1):68-74.
|
[15] |
张乔勋, 李帝铨, 田茂军. 广域电磁法在赣南某盆地油气勘探中的应用[J]. 石油地球物理勘探, 2017,52(5):1085-1092.
|
[15] |
Zhang Q X, Li D Q, Tian M J. Application of wide area electromagnetic method in biogas exploration in the north of Dongting Basin and prediction of prospective target area[J]. OGP, 2017,52(5):1085-1092.
|
[16] |
曹彦荣, 宋涛, 韩红庆, 等. 用广域电磁法勘查深层地热资源[J]. 物探与化探, 2017,41(4):678-683.
|
[16] |
Cao Y R, Song T, Han H Q, et al. Exploration of deep geothermal energy resources with wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2017,41(4):678-683.
|
[17] |
胡艳芳, 李帝铨. 广域电磁法在安徽铜陵冬瓜山铜矿区的应用研究[C]// 中国地球物理学会, 2015: 21-24.
|
[17] |
Hu Y F, Li D Q. Application of wide area electromagnetic method in Dongguashan Copper Mine, Tongling, Anhui Province[C]// Proceedings of 2015 China Geoscience union annual meeting, 2015: 21-24.
|
[18] |
何继善, 李帝铨, 戴世坤. 广域电磁法在湘西北页岩气探测中的应用[J]. 石油地球物理勘探, 2014,49(5):1006-1012.
|
[18] |
He J S, Li D Q, Dai S K. Application of wide area electromagnetic method in shale gas exploration in the north of West Hunan[J]. OGP, 2014,49(5):1006-1012.
|
|
|
|