|
|
The application of melting sample preparation-X ray fluorescence spectrometry to measuring a small amount of soil certified reference material |
Hong-Kun ZHAO1,2( ), Ya-Bo HAO3, You-Guo TIAN4, Xiang-Zhao GAO4, Ya-Xuan LIU1( ) |
1. Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang 065000,China 2. China University of Geosciences,Beijing 100083,China 3. TJ-Standard (tianjin) Metrology Testing Co. Ltd,Tianjin 300380,China 4. National Agro-Tech Extension and Service Center,Beijing 100026,China |
|
|
Abstract X ray fluorescence spectrometry (XRF) is one of the important methods to test the homogeneity of geochemical reference materials, but there is still controversy about the application. The homogeneity test requires the prerequisite that the sample weight is the minimum. The result of homogeneity test using conventional powder tableting or melting samples by XRF is generally larger than the minimum sample weight, so the results obtained are not theoretically sufficient to support the homogeneity of the sample under the condition of minimum sample weight. In this study, the 0.1 g samples experienced melted preparation with a mixed flux of Li2B4O7 LiBO2 and LiF (mass ratio 45∶10∶5) and NH4I release agent. The authors established an experiential method to analyzetotally 10 measuring components, i.e., SiO2, Al2O3, TFe2O3, MgO, CaO, Na2O, K2O, Mn, Ti and P. The correlation coefficient of the calibration curve of each component was between 0.997 3 and 1.000 0. The experimental optimization results of sample preparation conditions showed that the ratio of sample to mixed flux was 1∶4, 2 drops of 0.2 g/mL and ammonia iodide were used as the mold release agent, melting at 1 050 ℃ for 10 min., leading to the best molding effect. The method parameters were studied. The relative standard deviation of each component was 0.2%~5.3 %, and the relative error was less than 6.2%. The method precision and method accuracy were high. Compared with the conventional sample weighing of 0.65 g, the experimental results of the two methods are consistent. This study provides the basis for the application of X ray fluorescence spectroscopy to the homogeneity test of geochemical reference materials.
|
Received: 02 February 2020
Published: 28 August 2020
|
|
Corresponding Authors:
Ya-Xuan LIU
E-mail: 878063323@qq.com;ll.yx@hotmil.com
|
|
|
|
|
The picture of self-made platinum-Au crucible
|
元素谱线 | 电压-电流/(kV-mA) | 准直器 | 晶体 | 探测器 | PHA | Fe-K | 60-60 | S4 | LiF(200) | SC | 100-350 | Mn-K | 60-60 | S4 | LiF(200) | SC | 100-320 | Ti-K | 40-90 | S4 | LiF(200) | SC | 100-320 | Ca-K | 30-120 | S4 | LiF(200) | PC | 130-300 | K-K | 30-120 | S4 | LiF(200) | PC | 120-300 | Si-K | 30-120 | S4 | RX25 | PC | 120-320 | Al-K | 30-120 | S4 | PET | PC | 120-320 | Mg-K | 30-120 | S4 | PX25 | PC | 100-275 | Na-K | 30-120 | S4 | PX25 | PC | 100-290 | P-K | 30-120 | S4 | Ge | PC | 135-300 |
|
Optimum instrumental parameters for the 0.1 g fusion sample method
|
|
Some obtained fusion glasses when the dilution ratio is greater than 1∶8
|
|
The chart of sample precision with different dilution ratio
|
熔样温度/℃ | Fe-K | Ca-K | K-K | Si-K | Al-K | 920 | | | 存在不熔物 | | | 950 | | | 存在不熔物 | | | 1000 | 0.29 | 0.65 | 0.33 | 0.44 | 0.37 | 1050 | 0.50 | 0.61 | 0.21 | 0.35 | 0.80 | 1100 | 0.27 | 0.81 | 0.35 | 0.34 | 0.44 |
|
Sample preparation precision under different melting temperature conditions
|
熔样时间/min | 预熔时间/min | 上举时间/s | 摆平时间/s | 往复次数/次 | 5 | 1 | 45 | 15 | 4 | 10 | 2 | 90 | 30 | 4 | 15 | 3 | 135 | 45 | 4 | 20 | 4 | 180 | 60 | 4 | 25 | 5 | 225 | 75 | 4 |
|
Melting time and process table
|
|
Sample precision of different melting time
|
|
Precision diagram of melting sample with different amount of release agent
|
组分 | 线性范围 | 校准曲线相关系数r | SiO2 | 32.69~88.89 | 0.9973 | Al2O3 | 2.84~29.26 | 0.9993 | TFe2O3 | 1.46~18.76 | 0.9999 | MgO | 0.12~3.4 | 0.9998 | CaO | 0.1~8.27 | 1.0000 | Na2O | 0.039~8.99 | 0.9997 | K2O | 0.125~4.31 | 0.9996 | Mn | 218~1780 | 09989 | P | 166~1520 | 09979 | Ti | 1270~20200 | 0.9997 |
|
Calibration linear range and the correlation coefficient
|
组分 | GSD-25 | | GSD-26 | 平均值X | 相对标准偏差RSD/% | 平均值X | 相对标准偏差RSD/% | SiO2 | 68.53 | 0.6 | | 63.04 | 0.2 | Al2O3 | 12.59 | 0.7 | | 14.15 | 0.4 | TFe2O3 | 3.82 | 0.9 | | 5.18 | 0.4 | MgO | 1.07 | 2.1 | | 1.80 | 1.2 | CaO | 3.49 | 1.3 | | 3.87 | 0.4 | Na2O | 2.05 | 2.4 | | 0.78 | 3.9 | K2O | 3.12 | 0.7 | | 3.03 | 0.4 | Mn | 858 | 2.5 | | 543 | 3.8 | P | 408 | 5.3 | | 514 | 2.8 | Ti | 2401 | 3.3 | | 3818 | 2.1 |
|
The experimental results of methods precision
|
组分 | GSD-25 | GSD-26 | 认定值 | 0.65g | | 0.1g | 认定值 | 0.65g | | 0.1g | | 测量值 | |RE|/% | 测量值 | |RE|/% | | 测量值 | |RE|/% | 测量值 | |RE|/% | SiO2 | 71.14 | 68.49 | 3.7 | 67.98 | 4.4 | 63.48 | 63.01 | 0.7 | 61.97 | 2.4 | Al2O3 | 12.85 | 12.61 | 1.9 | 12.25 | 4.6 | 14.10 | 14.14 | 0.3 | 13.71 | 2.8 | TFe2O3 | 3.86 | 3.83 | 0.9 | 3.75 | 2.9 | 5.16 | 5.17 | 0.3 | 5.04 | 2.3 | MgO | 1.07 | 1.08 | 0.9 | 1.04 | 3.3 | 1.73 | 1.79 | 3.3 | 1.71 | 1.2 | CaO | 3.52 | 3.49 | 0.9 | 3.45 | 2.1 | 3.78 | 3.88 | 2.6 | 3.71 | 2.0 | Na2O | 2.13 | 2.05 | 3.7 | 2.10 | 1.3 | 0.83 | 0.78 | 6.2 | 0.78 | 6.6 | K2O | 3.24 | 3.12 | 3.8 | 3.15 | 2.7 | 3.04 | 3.03 | 0.3 | 2.93 | 3.5 | Mn | 827 | 856 | 3.5 | 828 | 0.1 | 519 | 537 | 3.4 | 510 | 1.7 | P | 415 | 411 | 1.0 | 390 | 6.0 | 498 | 519 | 4.2 | 517 | 3.8 | Ti | 2480 | 2401 | 3.2 | 2364 | 4.7 | 3680 | 3807 | 3.5 | 3673 | 0.2 |
|
The experimental results of method accuracy
|
[1] |
Wang X H, Wang Y M, Gao Y S, et al. Preparation of five China sea and continental shelf sediment reference materials (MSCS-1-5) with ultra-fine particle size distributions[J]. Geostandards and Geoanalytical Research, 2009,33(3):357-368.
|
[2] |
王毅民, 王晓红, 高玉淑, 等. 中国地质标准物质制备技术与方法研究进展[J]. 地质通报, 2010,29(7):1090-1104.
|
[2] |
Wang Y M, Wang X H, Gao Y S, et al. Advances in preparing techniques for geochemical reference materials in China[J]. Geological Bulletin of China, 2010,29(7):1090-1104.
|
[3] |
Saini N K, Khanna P P, Mukherjee P K, et al. Preparation and characterisation of two geochemical reference materials: DG-H(granite)and AM-H (amphibolite) from the Himalayan orogenic belt[J]. Geostandards and Geoanalytical Research, 2014,38(1):111-122.
|
[4] |
Idris A M. Between-bottle homogeneity test of new certified reference materials employing wavelength dispersive X-ray fluorescence spectrometry[J]. BMC chemistry, 2019(1),13-23.
|
[5] |
刘妹, 程志中, 顾铁新, 等. 钼矿石与钼精矿成分分析标准物质研制[J]. 岩矿测试, 2013,32(6):944-951.
|
[5] |
Liu M, Cheng Z Z, Gu T X, et al. Preparation of molybdenum ore and molybdenum concentrate reference materials[J]. Rock & Mineral Analysis, 2013,32(6):944-951.
|
[6] |
Cheng Z Z, Huang H K, Liu M, et al. Preparation of four chromium ore reference materials[J]. Geostandards and Geoanalytical Research, 2013,37(1):95-101.
|
[7] |
Cheng Z Z, Liu M, Huang H.K, et al. Usable values of nickel ore and nickel concentrate certified reference materials[J]. Geostandards and Geoanalytical Research, 2015,39(2):221-232.
|
[8] |
曾美云, 刘金, 邵鑫, 等. 磷矿石化学成分分析标准物质研制[J]. 岩矿测试, 2017,36(6):633-640.
|
[8] |
Zeng M Y, Liu J, Shao X, et al. Preparation of phosphate ore reference materials for chemical composition analysis[J]. Rock & Mineral Analysis, 2017,36(6):633-640.
|
[9] |
夏传波, 成学海. X射线荧光光谱法在电气石标准物质均匀性检验中的应用[J]. 化学分析计量, 2016,25(1):1-4.
|
[9] |
Xia C B, Cheng X H. Application of X-ray fluorescence spectrometry in the homogeneity test of tourmaline reference materials[J]. Chemical Analysis And Meterage, 2016,25(1):1-4.
|
[10] |
王毅民, 高玉淑, 王晓红. 中国地质标准物质研制和标准方法制定的成果与思考[J]. 岩矿测试, 2006,25(1):55-63.
|
[10] |
Wang Y M, Gao Y S, Wang X H. A review on study of geochemical reference materials and reference methods in China[J]. Rock & Mineral Analysis, 2006,25(1):55-63.
|
[11] |
王毅民, 王晓红, 何红蓼, 等. 地质标准物质的最小取样量问题[J]. 地质通报, 2009,28(6):804-807.
|
[11] |
Wang Y M, Wang X H, He H L, et al. The minimum sampling mass of geostandards reference materials[J]. Geological Bulletin Of China, 2009,28(6):804-807.
|
[12] |
王晓红, 王毅民, 高玉淑, 等. 地质标准物质均匀性检验方法评介与探讨[J]. 岩矿测试, 2010,29(6):735-741.
|
[12] |
Wang X H, Wang Y M, Gao Y S, et al. A review on homogeneity testing techniques for geochemical reference materials in China[J]. Rock & Mineral Analysis, 2010,29(6):735-741.
|
[1] |
SUN Bin-Bin, ZHANG Xue-Jun, LIU Zhan-Yuan, ZHOU Guo-Hua, ZHANG Bi-Min, CHEN Ya-Dong. A preliminary study of the formation mechanism of the geoelectric chemistry anomaly[J]. Geophysical and Geochemical Exploration, 2015, 39(6): 1183-1187. |
[2] |
LUAN Jin-hua, CHENG Jun, WANG Wei, HUANG Bo, MENG Bing-ru, QIN Lin. SOIL GEOCHEMISTRY OF THE GROWING AREA OF FENGJIE NAVEL ORANGE[J]. Geophysical and Geochemical Exploration, 2011, 35(6): 829-832. |
|
|
|
|