|
|
The application of aeromagnetotelluric survey technology to Dandong area, Liaoning Province |
WANG Zhi-Hong1,2( ), JIANG Min-Zhong1,2, PENG Li-Hong1,2, CHENG Sha-Sha1,2 |
1. Airborne Survey and Remote Sensing Center of Nuclear Industry,Shijiazhuang 050002,China 2. Key Laboratory of Uranium Resources Geophysical Exploration Technology,Shijiazhuang 050002,China |
|
|
Abstract This paper briefly introduces the principle of aeromagnetotelluric method, the measurement system, the calculation of tiltepper parameters and the two-imensional and three-dimensional inversion. By using the forward program, the tipplter parameters of the geoelectric model of the transverse electrical interface were calculated. The results show that the tilter data obviously reflect the transverse electrical interface. Finally, combined with the actual geological situation, the distribution characteristics of rock mass and ore-control structure in the area were found by using the measured tilter and inversion resistivity data, and some results were obtained, which verify the feasibility of the method.
|
Received: 21 October 2019
Published: 28 August 2020
|
|
|
|
|
|
Geoelectric model
|
|
Model tipper response section
|
|
Simple geology over survey of working area 1—Quaternary;2—Jurassic-Certaceous Xiaoling Group;3—Daixian Group;4—Dashiqiao Group;5—Gaojiayu Group;6—Lieryu Group;7—Cretaceous monzogranite;8—Jurassic monzogranite;9—Triassic monzogranite;10—Paleoproterozoic granite;11—granite porphyry;12—measured normal fault;13—measured reverse fault;14—unknown fault measured;15—lead zinc ore;16—gold mine;17—aeromagnetotelluric line
|
|
ZTEM Hz reciver coil
|
|
ZTEM Hx-Hy reference coil
|
|
Aeromagnetic ΔT and 150 Hz in-phase TD contour a—ΔT;b—150 Hz TD;1—fracture; 2—rock mass distribution range; 3—aeronautical magnetotelluric survey line
|
Fig. 6 ">
|
Tipper in-phase TD contour a—300 Hz;b—75 Hz;The legend is the same as that in Fig. 6
|
Fig. 6 ">
|
Tipper in-phase TPR contour a—300 Hz;b—75 Hz;the legend is the same as that in Fig. 6
|
Fig. 6 ">
|
Resistivity depth slice contour a—200 m depth;b—1 000 m depth;the legend is the same as that in Fig. 6
|
|
Resistivity sections of survey along line L6480
|
[1] |
Labson V F, Becker A, Morrison H F, et al. Geophysical exploration with audio frequency natural magnetic fields[J]. Geophysics, 1985,50(4):656-664.
|
[2] |
Sattel D, Witherly K, Becken M. A brief analysis of ZTEM data from the Forrestania test site[R]. ASEG,WA, 2010.
|
[3] |
Legault J M, Zhao S K, Fitch R. ZTEM airborne AFMAG survey results over low sulphidation epithermal gold-silver vein systems at Gold Springs,south eastern Nevada[A]// 22nd International Geophysical Conference and Exhibition, 2012-02-26.
|
[4] |
Lo B, Legault , Kuzmin . Z-TEM (Airborne AFMAG) tests over unconformity uranium deposits[A]// 20th ASEG International Geophysical Conference & Exhibition, 2008.
|
[5] |
陈清礼, 胡文宝, 李金铭, 等. 埋藏球体的倾子响应特征分析[J]. 石油天然气学报, 2007,29(3):75-78+505.
|
[5] |
Chen Q L, Hu W B, Li J M, et al. Analysis of the tipper response characteristics of buried sphere[J]. Journal of Oil and Gas Technology, 2007,29(3):75-78+505.
|
[6] |
陈小斌, 赵国泽, 詹艳, 等. 磁倾子矢量的图示分析及其应用研究[J]. 地学前缘, 2004,11(4):626-636.
|
[6] |
Chen X B, Zhao G Z, Zhan Y, et al. Analysis of tipper visual vectors and its application[J]. Earth Science Frontiers, 2004,11(4):626-636.
|
[7] |
童孝忠, 柳建新, 刘颖, 等. 利用有限单元法模拟二维MT倾子响应[J]. 吉林大学学报:地球科学版, 2011,41(s1):349-353.
|
[7] |
Tong X Z, Liu J X, Liu Y, et al. Calculating tipper response in two-dimensional magnetelluric using finite element method[J]. Journal of Jilin University:Earth Science Edition, 2011,41(sup1):349-353.
|
[8] |
余年, 胡祥云, 王绪本, 等. 大地电磁二维倾子和视倾子模拟及其应用研究[J]. 西南交通大学学报, 2014,49(2):268-275.
|
[8] |
Yu N, Hu X Y, Wang X B, et al. Two-dimensional magnetotelluric tipper and apparent tipper simulation and application[J]. Journal of Southwest JiaoTong University, 2014,49(2):268-275.
|
[9] |
林昌洪, 谭捍东, 佟拓. 倾子资料的三维共轭梯度反演研究[J]. 地球物理学报, 2011,5(4):1106-1113.
|
[9] |
Lin C H, Tan H D, Tong T. Three-dimensional conjugate inversion of tipper data[J]. Chinese Journal of Geophysics, 2011,54(4):1106-1113.
|
[10] |
许智博. ZTEM起伏地形二维正反演研究 [D]. 北京:中国地质大学(北京), 2016.
|
[10] |
Xu Z B. Research of 2D ZTEM forward modeling and inversion with uneven topography[D]. Beijing: China University of Geosciences(Beijing), 2016.
|
[11] |
李志强. ZTEM三维正反演研究 [D]. 北京:中国地质大学(北京), 2016.
|
[11] |
Li Z Q. Research on ZTEM three-dimensional forward modeling and inversion[D]. Beijing: China University of Geosciences(Beijing), 2016.
|
[12] |
张铭, 刘长胜, 康利利, 等. 基于航空大地电磁倾子特征的二维大地结构探测方法[J]. 地球物理学进展, 2018,33(3):1303-1312.
|
[12] |
Zhang M, Liu C S, Kang L L, et al. Two-dimensional ground structure detection method based on the tipper characteristics of airborne magnetotelluric[J]. Progress in Geophysics, 2018,33(3):1303-1312.
|
[13] |
赵丛, 朱琳, 李怀渊. 航空和地面天然场电磁法联合开展深部矿产资源勘探[J]. 物探与化探, 2016,40(2):333-341.
|
[13] |
Zhao C, Zhu L, Li H Y, et al. Deep mineral exploration by airborne and ground natural field electromagnetic method[J]. Geophysical and Geochemical exploration, 2016,40(2):333-341.
|
[14] |
吴頔. 二维及三维倾子响应和异常体识别[D]. 长沙:中南大学, 2012.
|
[14] |
Wu D. 2D&3D tipper response and distinguishing to anomalous bodies[D]. >Changsha: Central South University, 2012.
|
[15] |
Holtham E, Oldenburg D W. Three-dimensional inversion of ZTEM data[J]. Geophysical Journal International, 2010,182:168-182.
|
[16] |
谭捍东, 魏文博, 邓明, 等. 大地电磁法张量阻抗通用计算公式[J]. 石油地球物理勘探, 2004,39(1):113-116.
|
[16] |
Tan H D, Wei W B, Deng M, et al. General calculation formula of tensor impedance in magnetotelluric method[J]. Oil Geophysical prospecting, 2004,39(1):113-116.
|
[17] |
Lo B, Zang M. Numerical modeling of ZTEM (airborne AFMAG) responses to guide exploration strategies[A]// 78th Ann Internat Mtg,SEG,Expanded Abstracts, 2008,27(1):1098-1102.
|
[18] |
Wang T, Tan H D, Li Z Q, et al. 3D finite-difference modeling algorithm and anomaly features of ZTEM[J]. Applied Geophysics, 2016,13(3):553-560.
|
[19] |
董存杰. 青城子铅锌金银多金属矿田矿床地质特征及成矿系统分析 [D]. 北京:中国地质大学(北京), 2012.
|
[19] |
Dong C J. Geological characteristics of the deposits and analysis of the mineralization system of Qingchenzi Pb-Zn-Au-Ag polymetallic ore field[D]. Beijing: China University of Geosciences(Beijing), 2012.
|
[20] |
刘君. 青城子矿田构造变形结构及其控矿特征[J]. 辽宁地质, 1995(2):148-157.
|
[20] |
Liu J. Tectonic deformation texture and ore-controlling features of Qingchengzi orefield[J]. LiaoNing Geology, 1995(2):148-157.
|
[21] |
黄宗瑶, 施林道, 方如恒. 华北陆块北缘及邻区有色金属矿床地质 [M]. 北京: 地质出版社, 1994.
|
[21] |
Huang Z Y, Shi L D, Fang R H. Geology of metal deposits in the northern margin of North China block and its adjacent[M]. Beijing: Geological Publishing House, 1994.
|
[1] |
CHEN Xiu-Juan, LIU Zhi-Di, LIU Yu-Xi, CHAI Hui-Qiang, WANG Yong. Research into the pore structure of tight reservoirs:A review[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 22-31. |
[2] |
XIAO Guan-Hua, ZHANG Wei, CHEN Heng-Chun, ZHUO Wu, WANG Yan-Jun, REN Li-Ying. Application of shallow seismic reflection surveys in the exploration of urban underground space in Jinan[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 96-103. |
|
|
|
|