|
|
Geological radar detection for the fractures of dangerous rock body in the high-steep gorge area of Wuxia section in the Three Gorges reservoir area |
Yang GAO1, Ming-Tao PENG1, Pei-Sheng YANG2, Heng WANG1, Ping WANG1, Hai LI1 |
1. No. 208 Hydrogeological and Engineering Party,Bureau of Geological Exploration of Chongqing,Chongqing 400700,China 2. Laurel Geophysics Company Chengdu Center,Chengdu 610037,China |
|
|
Abstract Rocks along the Three Gorges reservoir area are cracked due to the influence of structure,weathering and water-level-fluctuation area.In this paper,the finite difference forward algorithm program was used to simulate and calculate the radar response characteristics of the fractures of dangerous rock body.The results show that different inclined fractures have different GPR response characteristics.According to the corresponding relationship between model and simulation results,fractures can be identified from field measured data.Taking the geological radar detection of Banbiyan dangerous rock zone in Chongqing as a study case,the authors successfully identified the fractures of dangerous rock bodies by inferring and interpreting the field measured data of ground penetrating radar.The case study itself can be used as a reference for the detection of the fractures of the dangerous rock body in other water-level-fluctuation areas.
|
Received: 10 May 2019
Published: 22 April 2020
|
|
|
|
|
|
Effects of different crack on GPR response a—vertical fracture model and simulation results;b—inclined fracture model and simulation results;c—vertical inclined combined fracture model and simulation results;d—composite fracture model and simulation results;e—sparated void model and simulation results;f—combined cavity model and simulation results
|
|
Elevation drawing of dangerous rock zone of Banbiyan
|
|
Geological Radar Line plane figure
|
|
146 m level of geological radar images
|
|
156 m level of geological radar images
|
|
176 m level of geological radar images
|
|
High Definition Camera Image in Borehole XK1
|
|
High Definition Camera Image in Borehole XK4
|
|
The results of Wave Velocity Test in XK2 borehole
|
[1] |
梁鑫, 殷坤龙, 陈丽霞 , 等. 库水位波动及降雨作用下巫峡干井子滑坡流-固耦合特征及稳定性分析[J]. 中国地质灾害与防治学报, 2019,30(1):30-40.
|
[1] |
Liang X, Yin K L, Chen L X , et al. Flow-solid coupling characteristics and stability analysis of Ganjingzi Landslide in the Wu Gorge under reservoir water level fluctuation and rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2019,30(1):30-40.
|
[2] |
陈洪凯, 唐红梅 . 长江三峡水库区危岩分类及宏观判据研究[J]. 中国地质灾害与防治报, 2005,16(4):53-57,78.
|
[2] |
Chen H K, Tang H M . Classification and identify of perilous rock in the area of the Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control, 2005,16(4):53-57,78.
|
[3] |
何潇, 陈洪凯, 赵鹏 , 等. 长江巫峡岸坡座滑式危岩稳定性研究——以望霞座滑式危岩为例[J]. 中国岩溶, 2013,32(4):411-418.
|
[3] |
He X, Chen H K, Zhao P , et al. On the stability of slide type crag in Wu gorge bank slope,Yangtze River:A case study in Wangxia[J]. Carsologica Sinica, 2013,32(4):411-418.
|
[4] |
殷坤龙, 周春梅, 柴波 . 三峡库区巫峡段反倾岩石边坡的破坏机制及判据[J]. 岩石力学与工程学报, 2014,33(8):1635-1643.
|
[4] |
Yin K L, Zhou C M, Chai B . Failure mechanism and criterion of counter-tilt rock slopes at wuxia gorge section in three gorges reservoir area[J]. Chinese Journal of Rock Mechanics & Engineering, 2014,33(8):1635-1643.
|
[5] |
李洋, 王金平, 魏启明 . 瞬变电磁法在井下工作面顶板导水裂缝探测中的应用[J]. 煤田地质与勘探, 2018,46(s1):66-71.
|
[5] |
Li Y, Wang J P, Wei Q M . Application of transient electromagnetic method for detecting water-conducting crack in the roof of underground working face[J]. Coal Geology & Exploration, 2018,46(s1):66-71.
|
[6] |
郭建强, 彭成, 孙党生 . 链子崖危岩体勘查中物探技术的应用[J].水文地质工程地质, 2003(3):54-57.
|
[6] |
Guo J Q, Peng C, Sun D S . Application of geophysical prospecting technique to survey the dangerous rockmass in Lianzi Cliff[J].Hydrogeology & Engineering, 2003(3):54-57.
|
[7] |
刘惠生, 唐大荣, 吴庆曾 , 等. 非常规综合物探技术在长江三峡链子崖危岩体勘查中的应用效果[J].中国地质灾害与防治学报, 1991(3):77-86.
|
[7] |
Liu H S, Tang D R, Wu Q Z , et al. The application effects of non-conventional comprehensive geophysical technology in the exploration of Lianzi cliff dangerous rock body in the Sanxia gorges on Changjiang river[J].The Chinese Journal of Geological Hazard and Control, 1991(3):77-86.
|
[8] |
李维树, 童克强, 董忠华 . 高边坡岩体卸荷带检测方法及卸荷特征研究[J].岩石力学与工程学报, 2001(s1):1669-1673.
|
[8] |
Li W S, Tong K Q, Dong Z H . Examining method of unload zone and study of unload behaviour for high slope[J].Chinese Journal of Rock Mechanics and Engineering, 2001(s1):1669-1673.
|
[9] |
卢贤锥 . 探地雷达在铁路隧道检测中的应用[J]. 物探与化探, 2017,41(4):775-778.
|
[9] |
Lu X Z . Application of ground penetrating radar in railway tunnel inspection[J]. Geophysical and Geochemical Exploration, 2017,41(4):775-778.
|
[10] |
杨天春, 吕绍林, 王齐仁 . 探地雷达检测道路厚度结构的应用现状及进展[J]. 物探与化探, 2003,27(1):79-82.
|
[10] |
Yang T C, Lyu S L, Wang Q R . The application and development of GPR in detection of pavement thickness and highway structures[J]. Geophysical and Geochemical Exploration, 2003,27(1):79-82.
|
[11] |
覃谭, 赵永辉, 林国聪 , 等. 探地雷达在上林湖越窑遗址水下考古中的应用[J]. 物探与化探, 2018,42(3):624-630.
|
[11] |
Tan Q, Zhao Y H, Lin G C , et al. The application of GPR to underwater archaeological investigation of Shanglinhu Yue kiln relics[J]. Geophysical and Geochemical Exploration, 2018,42(3):624-630.
|
[12] |
朱楠男, 李家存, 叶培盛 . 探地雷达在古墓遗址探测中的应用——以北京市通州区古墓群探测为例[J]. 物探与化探, 2017,41(3):577-582.
|
[12] |
Zhu N N, Li J C, Ye P S . The application of the ground penetrating radar (GPR) to the detection f ruins of ancient tombs[J]. Geophysical and Geochemical Exploration, 2017,41(3):577-582.
|
[13] |
刘生荣, 张瑾爱, 唐小平 . 探地雷达在探测基岩顶深度中的应用[J]. 物探与化探, 2018,42(2):325-330.
|
[13] |
Liu S R, Zhang J A, Tang X P . The application of GPR in detecting the depth of bedrock[J]. Geophysical and Geochemical Exploration, 2018,42(2):325-330.
|
[14] |
薛建, 梁文婧, 刘立家 , 等. 探地雷达低频天线在工程勘探中的应用[J]. 物探与化探, 2015,39(6):1251-1256.
|
[14] |
Xue J, Liang W J, Liu L J , et al. Application of ground penetrating radar with low frequency antennas in engineering prospecting[J]. Geophysical and Geochemical Exploration, 2015,39(6):1251-1256.
|
[15] |
熊俊楠, 孙铭, 彭超 , 等. 基于探地雷达的城镇燃气PE管道探测方法[J]. 物探与化探, 2015,39(5):1079-1084.
|
[15] |
Xiong J N, Sun M, Peng C , et al. The method for detection of town gas PE pipeline based on ground penetrating radar (GPR)[J]. Geophysical and Geochemical Exploration, 2015,39(5):1079-1084.
|
[16] |
杨天春, 冯建新, 王战军 . 探地雷达在桥塔塔基岩溶勘查中的应用及信号分析[J]. 物探与化探, 2011,35(2):280-284.
|
[16] |
Yang T C, Feng J X, Wang Z J . The application of GPR to the exploration of Karst caves in the foundation of bridge tower and its signal analysis[J]. Geophysical and Geochemical Exploration, 2011,35(2):280-284.
|
[17] |
薄会申 . 铁路隧道衬砌质量检测与评价探地雷达技术实用手册[M]. 北京: 地质出版社, 2006.
|
[17] |
Bo H S. Practical manual of geological radar technology for quality inspection and evaluation of railway tunnel lining[M]. Beijing: Geological Publishing House, 2006.
|
[18] |
袁明德 . 浅析探地雷达的分辨率[J]. 物探与化探, 2002,26(1):28-32.
|
[18] |
Yuan M D . A tentative discussion on the resolution of the ground-penetrating radar[J]. Geophysical and Geochemical Exploration, 2002,26(1):28-32.
|
[19] |
李大心 . 探地雷达方法与应用[M]. 北京: 地质出版社, 1994.
|
[19] |
Li D X. Method and application of ground penetrating radar[M]. Beijing: Geological Publishing House, 1994.
|
[20] |
雷林源 . 探地雷达应用中的几个基本问题[J]. 物探与化探, 1998,22(6):408-414.
|
[20] |
Lei L Y . Some basic problems in the application of ground-penetration radar[J]. Geophysical and Geochemical Exploration, 1998,22(6):408-414.
|
[21] |
郝建新, 魏玉峰, 林雄斌 . 地质雷达探测干扰因素及图像识别研究[J].工程勘察, 2008(11):73-75.
|
[21] |
Hao J X, Wei Y F, Lin X B . Research on interference factors and image identification in the detection with GPR[J].Journal of Geotechnical Investigation and Surveying, 2008(11):73-75.
|
[22] |
王超, 沈斐敏 . 小波变换在探地雷达弱信号去噪中的研究[J]. 物探与化探, 2015,39(2):421-424.
|
[22] |
Wang C, Shen F M . Study of wavelet transform in ground penetration radar weak signal denoising[J]. Geophysical and Geochemical Exploration, 2015,39(2):421-424.
|
|
|
|