|
|
The time-to-depth conversion based on multi-functions fitting solution and its application to complicated sedimentary area |
Jun WANG1,2, Zi-Ying XU1,2, Wei-Bo REN3 |
1. Guangzhou Marine Geology Survey,Guangzhou 510760,China 2. Key Laboratory of Marine Mineral Resources,Ministry of Natural Resources,Guangzhou 510760,China 3. Guangdong Underground Piping & Wiring Networks Engineering Survey Company,Guangzhou 510075,China; |
|
|
Abstract Compaction is the only consideration for 'velocity-depth' linear model of sedimentary strata.With the velocity spectra data along a multi-channel seismic profile in deep-water area of South China Sea basin and by applying the 'velocity-depth' linear model to the interpreted data of the profile,the authors obtained direct results for geological interpretation.In addition,through the creation of visual workflow and the consideration of horizontal variation of sedimentary interval velocity within the depth conversion procedures,the authors made the results of depth conversion more reliable.In the end,the authors gave a discussion on the limitation and further application of 'velocity-depth' linear model both from theory and practice,which deserves consideration in further work.
|
Received: 25 January 2019
Published: 03 March 2020
|
|
|
|
|
|
The “Depth-Vn” and “TWT-Vn” scatter plotting of the experimental seismic profile
|
|
Graphs showing the applicability of using various functions to fit the time-velocity relationship
|
|
The compare velocity distribution and the fitting parameters along the seismic profile
|
|
The interval velocity distribution and the fitting parameters along the seismic profile
|
|
The interpretation result of the seismic profile in depth field
|
[1] |
张英德 . 大深度低幅度构造多尺度时深转换方法——以阿尔及利亚X区块为例[J]. 地球物理学进展, 2013,28(4):1943-1953.
|
[1] |
Zhang Y D . Multi-scale time to depth conversion method for deep low relief structures——take Block X in Al[J]. Progress in Geophysics, 2013,28(4):1943-1953.
|
[2] |
陈林, 邓勇, 盖永浩 , 等. 复杂断块构造时深转换方法探讨——以涠西南凹陷为例[J]. 地球物理学进展, 2014,29(3):1121-1127.
|
[2] |
Chen L, Deng Y, Gai Y H , et al. Exploration of time-depth conversion method in complicated fault block——take Weixinan sag for example[J]. Progress in Geophysics, 2014,29(3):1121-1127.
|
[3] |
李培培, 刘志国, 杨松岭 , 等. 虚拟井技术在无井或少井条件下时深转换中的应用[J]. 物探与化探, 2015,39(5):994-1000.
|
[3] |
Li P P, Liu Z G, Yang S L , et al. The application of virtual well technique to time-depth conversion under the condition of no or few wells[J]. Geophysical and Geochemical Exploration, 2015,39(5):994-1000.
|
[4] |
张国栋, 廖仪, 马光克 . 速度体高精度建模法在深水M气田时深转换中的应用[J]. 地球物理学进展, 2016,31(5):2246-2254.
|
[4] |
Zhang G D, Liao Y, Ma G K . Application of high precision velocity modeling methods for time-depth conversion in deepwater M gas field[J]. Progress in Geophysics, 2016,31(5):2246-2254.
|
[5] |
张志明, 曹丹平, 印兴耀 , 等. 时深转换中的井震联合速度建模方法研究与应用现状[J]. 地球物理学进展, 2016,31(5):2276-2284.
|
[5] |
Zhang Z M, Cao D P, Yin X Y , et al. Research and application atatus of well seismic joint velocity modeling in time-depth conversion[J]. Progress in Geophysics, 2016,31(5):2276-2284.
|
[6] |
郭璃, 邓勇, 赵顺兰 , 等. 特殊地质条件下的时深转换方法探讨——以涠西南凹陷南部斜坡带X井为例[J]. 地球物理学进展, 2017,32(1):152-159.
|
[6] |
Guo L, Deng Y, Zhao S L , et al. Research and discussion of time-depth conversion methods under special geological conditions[J]. Progress in Geophysics, 2017,32(1):152-159.
|
[7] |
秦童, 蔡纪琰, 王改卫 , 等. 石臼坨凸起陡坡带高速异常区时深转换研究[J]. 物探与化探, 2018,42(3):589-593.
|
[7] |
Qin T, Cai J Y, Wang G W , et al. A study of time-depth conversion of high-velocity anomaly area in the steep slope zone of Shijiutuo uplift[J]. Geophysical and Geochemical Exploration, 2018,42(3):589-593.
|
[8] |
张春贺, 乔德武, 李世臻 , 等. 复杂地区油气地球物理勘探技术集成[J]. 地球物理学报, 2011,54(2):374-387.
|
[8] |
Zhang C H, Qiao D W, Li S Z , et al. Integration of oil and gas geophysical exploration technologies for geologically complex areas[J]. Chinese Journal of Geophysics, 2011,54(2):374-387.
|
[9] |
鲁宝亮, 王璞臖, 张功成 , 等. 南海北部陆缘盆地基底结构及其油气勘探意义[J]. 石油学报, 2011,32(4):580-587.
|
[9] |
Lu B L, Wang P J, Zhang G C , et al. Basement structures of an epicontinental basin in the northern South China Sea and their significance in petroleum prospect[J]. Acta Petrolei Sinica, 2011,32(4):580-587.
|
[10] |
范芬, 刘爱群, 任科英 , 等. 乐东—陵水坡折带速度分析及时深转换方法[J]. 物探与化探, 2016,40(6):1185-1191.
|
[10] |
Fan F, Liu A Q, Ren K Y , et al. Velocity analysis and time-depth conversion study of Ledong-Lingshui slope-break belt[J]. Geophysical and Geochemical Exploration, 2016,40(6):1185-1191.
|
[11] |
汪俊, 高红芳, 黄永健 . 基于线性水平连续介质速度模型的南海中央海盆深水区速度分析[J]. 南海地质研究, 2010,1:67-75.
|
[11] |
Wang J, Gao H F, Huang Y J . Velocity analysis of South China Sea central basin deep-water area based on the linear horizontally continuous medium model[J]. Research of Geological South China Sea, 2010,1:67-76.
|
[12] |
李维新, 王红, 姚振兴 , 等. 基于约束条件横波速度反演和流体替代[J]. 地球物理学报, 2009,52(3):785-791.
|
[12] |
Li W X, Wang H, Yao Z X , et al. Shear-wave velocity setimation and fluid substitution by constraint method[J]. Chinese Journal of Geophysics, 2009,52(3):785-791.
|
[13] |
王衍棠, 王立飞, 曾祥辉 , 等. 南黄海盆地和北黄海盆地地震速度分析[J]. 物探与化探, 2008,32(3):241-246.
|
[13] |
Wang Y T, Wang L F, Zeng X H , et al. A preliminary analysis of the seismic velocity in the south yellow sea basin and the north yellow sea basin[J]. Geophysical and Geochemical Exploration, 2008,32(3):241-246.
|
[14] |
黄春菊, 周蒂, 陈长民 , 等. 深反射地震剖面所揭示的白云凹陷的深部地壳结构[J]. 科学通报, 2005,50(5):1024-1031.
|
[14] |
Huang C J, Zhou D, Chen C M , et al. The deep-crustal structures of Baiyun Sag revealed by deep seismic reflection profile[J]. Chinese Science Bulletin, 2005,50(10):1024-1031.
|
[15] |
张璐, 李辉, 支玲 , 等. 全地质构造格架模型约束下的速度建模技术研究及应用[J]. 地球物理学进展, 2018,33(4):1637-1644.
|
[15] |
Zhang L, Li H, Zhi L , et al. Study and applicaton of velocity modeling under the constraint of full geological structure framework[J]. Progress in Geophysics, 2018,33(4):1637-1644.
|
[16] |
郭爱华, 周家雄, 张国栋 , 等. 两种复杂构造时深转换方法研究及应用[J]. 西部探矿工程, 2010,( 11):54-59.
|
[16] |
Guo A H, Zhou J X, Zhang G D , et al. The exploration and application of time-depth conversion method in two kinds of complex structures[J]. West-China Exploration Engineering, 2010,( 11):54-59.
|
[17] |
杨金海, 周家雄, 宋爱学 , 等. 基于原始速度体的多元剥层时深转换方法在深海区中的应用与探讨——以中央峡谷A 构造为例[J]. 地球物理学进展, 2015,30(3):1437-1443.
|
[17] |
Yang J H, Zhou J X, Song A X , et al. Multivariate layer stripping based on the origin velocity cube depth conversion method used in deepwater area——take structure of central canyon A for example[J]. Progress in Geophysics, 2015,30(3):1437-1443.
|
[18] |
汪俊, 高红芳, 陈泓君 , 等. 基于“速度—深度”线性模型的时深转换方法及其在南海海盆深水区的应用[J]. 热带海洋学报, 2013,32(2):112-117.
|
[18] |
Wang J, Gao H F, Chen H J . Time to depth conversion based on velocity-depth linear model and its application in the deep-water area of South China Sea[J]. Journal of Tropical Oceanography, 2013,32(2):112-117.
|
[19] |
周蒂, 胡登科, 何敏 . 深部地层时深转换中的拟合式选择问题[J]. 地球科学—中国地质大学学报, 2008,33(4):531-537.
|
[19] |
Zhou D, Hu D K, He M , et al. The selection of fitting curve in time-depth transformation of deep-seated strata and crust[J]. Earth Science-Journal of China University of Geosciences, 2008,33(4):531-537.
|
[20] |
杨海长, 赵志刚, 张生强 , 等. 拟合公式法时深转换在深层应用中的探讨[J]. 地球物理学进展, 2016,31(4):1852-1856.
|
[20] |
Yang H Z, Zhao Z G, Zhang S Q , et al. Discussion of fitting formula time-depth conversion in deep strata[J]. Progress in Geophysics, 2016,31(4):1852-1856.
|
[21] |
Dix C H . Seismic velocities from surface measurements[J]. Geophysics, 1955,20:68-86.
|
[22] |
何敏, 朱民, 汪瑞良 , 等. 白云区崎岖海底区时深转换方法探讨[J]. 地球物理学进展, 2007,22(3):966-971.
|
[22] |
He M, Zhu M, Wang R L , et al. The discussion of time-depth conversion methods in the baiyun deepwater rough seafloor area[J]. Progress in Geophysics, 2007,22(3):966-971.
|
[1] |
Dao-Huang YANG, Jiang-Ping LIU, Fei CHENG, Kai-Xuan PANG. The application of ultrasonic surface wave method to concrete strength testing[J]. Geophysical and Geochemical Exploration, 2020, 44(3): 626-634. |
[2] |
Pei HE, Qing-Cai ZENG, Jia-Qiang HUANG, Ren JIANG, Sheng CHEN, Xiao-Long GUO, Xiu-Jiao WANG, Ya-Di YANG. The application of phase scanning method to determining the polarity of seismic profile[J]. Geophysical and Geochemical Exploration, 2018, 42(4): 759-765. |
|
|
|
|