|
|
An analysis of anomaly characteristics of aerial gamma spectrum and uranium metallogenic potential in Bashenghe area, Inner Mongolia |
Hui-Xiong LU1,2, En ZHANG1,2, Bo FENG1, Xu CHENG1, Ben-Zan WEI1,2, Shao-Shuai WANG1, Fan FANG1 |
1. Airborne Survey and Remote Sensing Center of Nuclear Industry,Shijiazhuang 050002,China 2. Faculty of Earth Sciences,East China Institute of Technology Nanchang 330013,China |
|
|
Abstract Bashenghe is located in Chaihe Basin, Da Hinggan Mountains uranium metallogenic belt. Previous research on uranium prospecting has been very insufficient. Based on an analysis of the characteristics of airborne gamma-ray spectroscopy of typical regional uranium deposits, the authors established the anomalous indicators of airborne gamma-ray spectroscopy in regional volcanic-type uranium mineralization areas: high-value field of uranium, high-value halo of uranium increment (Delta U), low-value halo of active uranium (Hu), and high-value halo of airborne F-parameter. In terms of these features, the airborne gamma-ray spectrum data of the study area were processed effectively, then anomalous characteristics were analyzed, and five airborne comprehensive anomalous halos were delineated. Combined with stratigraphic, structural and geophysical and geochemical conditions, the uranium metallogenic potential of the five airborne comprehensive anomalous halos was studied. Finally, the integrated anomalous halos formed by H01, H02 and H03 in the study area was found with good volcanic uranium metallogenic potential.
|
Received: 23 July 2019
Published: 03 March 2020
|
|
|
|
|
|
A brief map of the geological structure of the study area 1—quaternary sand and gravel; 2—hongqigou group; 3—daheigou group; 4—baiyingaolao group; 5—manitu group; 6—manketou ebo group; 7—taluran gully group; 8—hongqi group; 9—linxi group; 10—hongshuiquan group; 11—tarbagot group; 12—nuohe group; 13—duo bao shan group; 14—early cretaceous syenogranite; 15—early cretaceous diorites; 16—late Jurassic binzogranite; 17—late Jurassic quartz diorite; 18—late Triassic medium-grained granite; 19—late Permian coarse-grained porphyritic granite; 20—late carboniferous coarse-grained granite; 21—late carboniferous granitic granites; 22—late carboniferous mesoperitic biotite monzogranite; 23—late carboniferous medium-grained granodiorites; 24—secondary rhyolite of baiyin high and old period; 25—quartz vein; 26—granite porphyry vein; 27—quartz erchang porphyry vein; 28—anorthosite granite porphyry; 29—normal porphyry vein; 30—diorite dike; 31—measured fracture, inferred fracture and radioactive fracture; 32—crater; 33—iron ore deposits;34—Copper and silver deposits; 35—molybdenum deposit; 36—cobalt deposit; 37—alum deposit; 38—kaolinite deposit; 39—volcanic basin boundary; 40—comprehensive abnormal halo and serial number of navigation; 41—study area
|
|
Geological map and comprehensive anomaly map of A1 uranium mine a—Geological map; b—Contour map of uranium; c—Contour map of uranium increment; d—Contour map of mobile uranium; e—Contour map of F parameter(U×K/Th);1—holocene gravel soil; 2—medium-acid volcanic rocks of baiyin gaolao group; 3—basic volcanic rocks in the manitu group;4—manktou ebo group intermediate acidic volcanic rocks; 5—lower Triassic intermediate volcanic rocks; 6—upper Permian slate, siltstone and sandstone; 7—upper carboniferous coarse conglomerate and metamorphic conglomerate; 8—middle and upper devonian rhyolitic grey breccia and foliated sandstone; 9—late Jurassic biotite monzogranite; 10—granitic porphyry; 11—measured and inferred faults; 12—uranium ore point, mineralization point, anomaly point
|
航空伽马能谱异常参数 | 取值标准 | 铀含量高场(A) | 4.1×10-6<A≤5.1×10-6 | 铀增量高值晕(ΔU) | ΔU>1.0×10-6 | 活性铀低值晕(Hu) | Hu<-1.6×10-6 | 航放F参数高值晕 | F>0.95×10-2 |
|
List of criteria for dividing parameters of Aeronautical gamma-ray spectrum anomalies in the study area
|
|
Aerial gamma-ray spectrum synthetic anomaly map in the study area a—contour map of uranium; b—contour map of uranium increment; c—contour map of mobile uranium; d—contour map of F parameter(U×K/Th)
|
[1] |
李怀渊, 江民忠, 陈国胜 , 等. 我国航空放射性测量进展及发展方向[J]. 物探与化探, 2018,42(4):645-652.
|
[1] |
Li H Y, Jiang M Z, Chen G S , et al. Progress and development direction of aviation radioactivity measurement in China[J]. Geophysical and Geochemical Exploration, 2018,42(4):645-652.
|
[2] |
于百川 . 我国航空放射性测量的进展[J]. 铀矿地质, 1990,6(2):99-119.
|
[2] |
Yu B C . Progress in aviation radioactivity measurement in China[J]. Uranium Geology, 1990,6(2):99-119.
|
[3] |
赵希刚, 吴汉宁, 杨建军 , 等. 砂岩型铀矿航空伽玛能谱数据微弱信息增强的地质意义[J]. 中国地质, 2007,34(3):478-485.
|
[3] |
Zhao X G, Wu H N, Yang J J , et al. Geological significance of weak information enhancement of airborne gamma spectroscopy data for sandstone-type uranium deposits[J]. China Geology, 2007,34(3):478-485.
|
[4] |
侯惠群, 韩绍阳, 柯丹 , 等. 砂岩型铀矿弱信息提取方法应用[J]. 地质通报, 2015,34(7):1344-1349.
|
[4] |
Hou H Q, Han S G, Ke D , et al. Application of weak information extraction method for sandstone-type uranium deposits[J]. Geological Bulletin, 2015,34(7):1344-1349.
|
[5] |
张恩, 段明, 卢辉雄 , 等. 林西—乌兰浩特地区铀成矿多源信息分析与成矿预测[J]. 物探与化探, 2019,43(5):948-957.
|
[5] |
Zhang E, Duan M, Lu H X , et al. Multi--source information analysis and mineralization prediction of uranium mineralization in linxi-ulanhot area[J]. Geophysical and Geochemical Exploration, 2019,43(5):948-957.
|
[6] |
陈江源 . 鄂尔多斯盆地南缘城阳—武沟地区航放异常铀找矿前景分析[J]. 物探与化探, 2019,43(3):509-521.
|
[6] |
Chen J Y . Prospect analysis of uranium prospecting in chengyang-wugou area, southern margin of ordos basin[J]. Geophysical and Geochemical Exploration, 2019,43(3):509-521.
|
[7] |
杜化宇, 李晓禄, 伍显红 . 放射性测量方法在马鬃山地区铀金找矿中的应用效果[J]. 物探与化探, 2018,42(4):697-702,707.
|
[7] |
Du H Y, Li X L, Wu X H . Application effect of radioactivity measurement method in uranium gold prospecting in maomishan area[J]. Geophysical and Geochemical Exploration, 2008,42(4):697-702,707.
|
[8] |
张云宜, 李耕, 赵翠萍 , 等. 航测资料在准噶尔盆地东部地区砂岩型铀矿成矿条件研究中应用[J]. 铀矿地质, 1998,14(4):234-240.
|
[8] |
Zhang Y Y, Li G, Zhao C P , et al. The application of aerial survey data in the study of metallogenic conditions of sandstone-type uranium deposits in the eastern Junggar Basin[J]. Uranium Geology, 1998,14(4):234-240.
|
[9] |
张恩, 汪冰, 全旭东 . 航放资料在冀北铅锌(银)矿产成矿预测中的应用[J]. 地质找矿论丛, 2014,29(2):274-277.
|
[9] |
Zhang E, Wang B, Quan X D . Application of aeronautical data in the prediction of mineralization of lead-zinc (silver) minerals in northern Hebei[J]. Geological Prospecting Theory, 2014,29(2):274-277.
|
[10] |
柯丹, 韩邵阳, 侯惠群 , 等. 花岗岩型铀矿勘查中航放信息的提取与综合[J]. 铀矿地质, 2009,25(6):349-354.
|
[10] |
Ke D, Han S Y, Hou H Q , et al. Extraction and synjournal of aeronautical emissions information in the exploration of granite-type uranium deposits[J]. Uranium Geology, 2009,25(6):349-354.
|
[11] |
陈江源, 江民忠, 常树帅 , 等. 潮水盆地平易凹陷南缘航放异常区铀找矿前景分析[J]. 物探与化探, 2017,41(1):102-110.
|
[11] |
Chen J Y, Jiang M Z, Chang S S , et al. Prospect analysis of uranium prospecting in the southern margin of plain sag of the tiaoshui basin[J]. Geophysical and Geochemical Exploration, 2017,41(1):102-110.
|
[12] |
崔志强 . 高精度航空物探在重要成矿带资源调查中的应用[J]. 物探与化探, 2018,42(1):38-49.
|
[12] |
Cui Z Q . Application of high-precision airborne geophysical exploration in resource investigation of important metallogenic belt[J]. Geophysical and Geochemical Exploration, 2008,42(1):38-49.
|
[13] |
赵丕忠, 程正发, 周二斌 , 等. 大兴安岭成矿带北段化探方法组合与找矿突破[J]. 物探与化探, 2014,38(3):471-477.
|
[13] |
Zhao P Z, Cheng Z F, Tu E B , et al. Geochemical exploration method combination and prospecting breakthrough in the northern section of the great hing 'an mountains mineralization belt[J]. Geophysical and Geochemical Exploration, 2014,38(3):471-477.
|
[14] |
胡树起, 贾玲珑, 刘国庆 . 大兴安岭成矿带成矿远景地球化学调查评价之设想与建议[J]. 物探与化探, 2016,40(5):843-852.
|
[14] |
Hu S Q, Jia L L, Liu G Q . Ideas and suggestions on geochemical investigation and evaluation of metallogenic prospects in the great hinggan mountains metallogenic belt[J]. Geophysical and Geochemical Exploration, 2016,40(5):843-852.
|
[15] |
陈国胜 . 航空放射性特征参数提取方法探讨及应用[R]. 核工业航测遥感中心, 2006.
|
[15] |
Chen G S . Research on extraction method of parameter of aerial radioactive features and its application [R]. Airborne Survey and Remote Sensing Center of Nuclear Industry, 2006.
|
[16] |
汪远志, 李兵海, 张俊伟 , 等. 全国铀矿资源潜力评价航放数据处理与研究[J]. 铀矿地质, 2012,28(6):361-369.
|
[16] |
Wang Y Z, Li B H, Zhang J W , et al. National uranium resource potential evaluation airborne data processing and research[J]. Uranium Geology, 2012,28(6):361-369.
|
[17] |
蔡文军, 沈正新, 祁程 , 等. 宁安盆地航空伽马能谱特征及铀成矿远景预测[J]. 铀矿地质, 2017,33(03):156-163.
|
[17] |
Cai W J, Shen Z X, Qi C , et al. Aerial gamma-ray spectrum characteristics and uranium metallogenic prospect prediction in Ningan Basin[J]. Uranium ore geology, 2017,33(03):156-163.
|
[18] |
席海银, 玛超, 卢胜军 , 等. 大兴安岭中段铀成矿地质条件及找矿方向[J]. 东华理工大学:自然科学版, 2017,40(3):237-245.
|
[18] |
Xi Haiyin, Ma Chao, Lu Shengjun , et al. Uranium metallogenic geological conditions and prospecting direction in the middle section of the Greater Xing’an Mountains[J]. East China Institute of Technology: Natural Science Edition, 2017,40(3):237-245.
|
[19] |
庄廷新, 范裕杰, 韩维久 , 等. 大兴安岭火山岩带富大型铀矿成矿地质条件研究[R]. 沈阳:核工业二四〇研究所, 1996, 1-5.
|
[19] |
Zhuang T X, Fan Y J, Han W J , et al. Study on metallogenic geological conditions of large-scale uranium deposits in the Daxinganling volcanic rock belt [R]. Shenyang: Institute of Nuclear Industry No. 24, 1996, 1-5.
|
[1] |
FENG Zhi-Bing, NIE Bing-Feng, NIE Feng-Jun, JIANG Li, XIA Fei, LI Man-Gen, YAN Zhao-Bin, HE Jian-Feng, CHENG Ruo-Dan. Application progress of geophysical methods in exploration of sandstone-type uranium deposit[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1179-1188. |
[2] |
HUANG Xiao, YU Hong-Long, JIANG Li, WANG Dian-Xue, ZHOU Wen-Bo, MA Zhen-Yu, ZHANG Liang-Liang, TANG Guo-Long. The application of thorium normalization to data processing of gamma ray spectrum in Dalin area,Kailu sub-basin,Songliao Basin[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 316-322. |
|
|
|
|