|
|
The calculation method of whole zone apparent resistivity of vertical magnetic field on the surface of layered model excited by horizontal electric dipole source |
Hai-Tao FU, Wei-Bin LUO( ), Zhi-Jun DING, Qi-Lin YU, Shi-Kuan ZHANG |
Gansu Nonferrous Geological Survey Institute, Lanzhou 730000,China |
|
|
Abstract Using the electromagnetic field formula of horizontal electric dipole source on the surface of layered model, the authors calculate electromagnetic field components of different transmitting and receiving distances and different layered geoelectric models systematically. The method for identifying frequency response by circular cross-correlation method and calculating the whole zone apparent resistivity is given. The apparent resistivity of the whole zone is calculated by using the Ex component of horizontal electric field and the Hz component of vertical magnetic field. Compared with the Cagniard apparent resistivity of layered model of magnetotelluric sounding and the Cagniard apparent resistivity of controlled source audio magnetotelluric sounding, the whole zone apparent resistivity of Ex component of horizontal electric field and the Hz component of vertical magnetic field can well reflect the geoelectric characteristics. Moreover, the whole zone apparent resistivity of the vertical magnetic field with the Hz component has similar frequency response characteristics with the Cagniard resistivity of the layered model of magnetotelluric sounding in low frequency band. As for deep buried basement, the whole zone apparent resistivity of the Hz component can respond well under the condition of small transceiver distance. The frequency of the vertical magnetic field component entering the near zone is lower than that of the horizontal electric field entering the near zone, which proves the proposed means is more conducive to deep exploration under the condition of small transceiver distance.
|
Received: 24 June 2019
Published: 28 November 2019
|
|
Corresponding Authors:
Wei-Bin LUO
E-mail: Email:lwbcsu@163.com
|
|
|
|
|
Layered geoelectricity model with horizontal electric dipole source
|
层参数 | 第一层 | 第二层 | 电阻率/(Ω·m) | 300 | 20 | 层厚/m | 1100 | Inf | m | 0 | 0 | τ/s | 0 | 0 | c | 0 | 0 |
|
D type geoelectricity model parameters
|
|
whole zone apparent resistivity spectrum of D-type geoelectricity model with horizontal electric dipole Source
|
层参数 | 第一层 | 第二层 | 电阻率/(Ω·m) | 300 | 1000 | 层厚/m | 1100 | Inf | m | 0 | 0 | τ/s | 0 | 0 | c | 0 | 0 |
|
G type geoelectricity model parameters
|
|
whole zone apparent resistivity spectrum of G-type geoelectricity model with horizontal electric dipole Source
|
层参数 | 第一层 | 第二层 | 第三层 | 电阻率/(Ω·m) | 300 | 20 | 700 | 层厚/m | 1200 | 300 | Inf | m | 0 | 0.35 | 0 | τ/s | 0 | 0.12 | 0 | c | 0 | 0.25 | 0 |
|
H type geoelectricity model parameters
|
|
whole zone apparent resistivity spectrum of H-type geoelectricity model with horizontal electric dipole Source
|
层参数 | 第一层 | 第二层 | 第三层 | 电阻率/(Ω·m) | 300 | 1000 | 200 | 层厚/m | 1100 | 400 | Inf | m | 0 | 0 | 0 | τ/s | 0 | 0 | 0 | c | 0 | 0 | 0 |
|
K type geoelectricity model parameters
|
|
whole zone apparent resistivity spectrum of K-type geoelectricity model with horizontal electric dipole Source
|
层参数 | 第一层 | 第二层 | 第三层 | 第四层 | 电阻率/(Ω·m) | 300 | 1000 | 10 | 500 | 层厚/m | 800 | 400 | 300 | Inf | m | 0 | 0 | 0.35 | 0 | τ/s | 0 | 0 | 0.1 | 0 | c | 0 | 0 | 0.25 | 0 |
|
KH type geoelectricity model parameters
|
|
whole zone apparent resistivity spectrum of KH-type geoelectricity model with horizontal electric dipole source with different transmit-receive distance
|
[1] |
Kaufman A A, Alekseev D, Oristaglio M . Principles of electromagnetic methods in surface geophysics[M]. Elsevier, 2014.
|
[2] |
Zhdanov M S . Foundations of geophysical electromagnetic theory and methods[M]. Elsevier, 2017.
|
[3] |
Chave A D, Jones A G. The magnetotelluric method: theory and practice[M]. Cambridge University Press, 2012.
|
[4] |
Viacheslav V . Spichak. Electromagnetic sounding of the Earth’s interior: theory, modeling, practice(2nd ed)[M]. Elsevier, 2015.
|
[5] |
殷长春 . 航空电磁理论与勘查技术[M]. 北京: 科学出版社, 2018.
|
[5] |
Yin C C. Aeromagnetic theory and exploration technology [M]. Beijing: Science Press, 2018.
|
[6] |
周海根 , 多场源地空频率域电磁探测方法研究[D]. 长春:吉林大学, 2017.
|
[6] |
Zhou H G . Research on ground-airborne frequency-domain electromagnetic methods with multiple sources[D]. Changchun: Jilin University, 2018.
|
[7] |
Richard A. Geyer. Handbook of geophysical exploration at sea(2nd ed) [M]. CRC Press, 2018.
|
[8] |
王若, 殷长春, 王妙月 , 等. CSAMT法一维层状介质灵敏度分析[J]. 地球物理学进展, 2014,29(3):1284-1291,doi: 10.6038/pg20140339.
|
[8] |
Wang R, Yin C C, Wang M Y , et al. CSAMT sensitivity analysis for 1D models[J]. Progress in Geophys (in Chinese), 2014,29(3):1284-1291, doi: 10.6038/pg20140339.
|
[9] |
李毓茂 , 等. 电磁频率测深方法与电偶源电磁频率测深量板[M]. 徐州: 中国矿业大学出版社, 2012. 7.
|
[9] |
Li Y M , et al. Electromagnetic frequency sounding method and dipole electromagnetic frequency sounding board [M]. Xuzhou: China University of Mining and Technology Press, 2012.
|
[10] |
Ziolkowski A, Hobbs B, Wright D . Multitransient electromagnetic demonstration survey in France[J]. Geophysics, 2007,72(4):197-207.
|
[11] |
底青云, 朱日祥, 薛国强 , 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019,62(6):2128-2138,doi: 10.6038/cjg2019M0633.
|
[11] |
Di Q Y, Zhu R X, Xue G Q , et al. New development of the Electromagnetic (EM) methods for deep exploration[J]. Chinese J. Geophys. (in Chinese), 2019,62(6):2128-2138, doi: 10.6038/cjg2019M0633.
|
[12] |
张文伟, 底青云, 雷达 , 等. 物探新方法——多通道瞬变电磁法在金属矿勘探中的应用[J]. 黄金科学技术, 2018,26(1):1-8.
|
[12] |
Zhang W W, Di Q Y, Lei D , et al. Multi-channel transient electromagnetic method:a new geophysical method and its application in exploring metallic ore deposits[J]. Gold Science and Technology, 2018,26(1):1-8.
|
[13] |
Strack K M . Exploration with deep transient electromagnetic[M]. Elsevier, 1992.
|
[14] |
汤井田, 何继善 . 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
|
[14] |
Tang J T, He J S. Controlled source audio magnetotelluric method and its application [M]. Changsha, Central South University Press, 2015.
|
[15] |
何继善 . 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.
|
[15] |
He J S. Wide-area electromagnetic method and pseudo-random signal electrical method [M]. Beijing: Higher Education Press, 2010.
|
[16] |
罗维斌, 李庆春, 汤井田 . 编码电磁测深[J]. 地球物理学报, 2012,55(1):341-349, doi: 10.6038/j.issn.0001-5733.2012.01.035.
|
[16] |
Luo W B, Li Q C, Tang J T . Coded source electromagnetic sounding method[J]. Chinese J. Geopgys. (in Chinese), 2012,55(1):341-349, doi: 10.6038/j.issn.0001-5733.2012.01.035.
|
[17] |
罗维斌 . 伪随机海洋可控源多道电磁测深法研究[D]. 长沙:中南大学, 2007.
|
[17] |
LUO W B . Study on pseudorandom marine controlled-source electromagnetic sounding with multi-offsets[D]. Changsha: Central South University, 2007.
|
[18] |
罗维斌, 汤井田, 韩海涛 , 等. 编码源电磁测深法获取大地全区视电阻率谱的方法及装置,ZL 2016 1 0013962.X[P/OL]. 2018-03-23.
|
[18] |
Luo W B, Tang J T, Han H T , et al. The method and device of obtaining whole zone apparent resistivity spectrum of the earth by coded source electromagnetic sounding, ZL 2016 1 0013962.X [P/OL]. 2018-03-23.
|
[19] |
佟铁钢 . E-Hz广域电磁方法研究[D]. 长沙:中南大学, 2010.
|
[19] |
Tong T G . E-Hz wide area electromagnetic method research[D]. Changsha: Central South University, 2010.
|
[20] |
Chave A D . Numerical integration of related Hankel transforms by quadrature and continued fraction expansion[J]. Geophysics, 1983,48(12):1671-1677.
|
[21] |
Nielsena T I, Baumgartnera F . CR1Dmod: A Matlab program to model 1D complex resistivity effects in electrical and electro-magnetic surveys[J]. Computers & Geosciences, 2006,32:1411-1419.
|
[1] |
LUO Wei-Bin, DING Zhi-Jun, GAO Shu-De, ZHANG Xing. Wide field electromagnetic sounding using y-component magnetic field with horizontal current dipole source[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 46-56. |
[2] |
CAO Qiang, LIN Chang-Hong, TAN Han-Dong, GONG Ying-Li. Occam inversion of CSAMT data in layered media with azimuthal anisotropy[J]. Geophysical and Geochemical Exploration, 2016, 40(3): 594-602. |
|
|
|
|