|
|
Geochemistry and oil-source rock correlations in the Shuanghe oilfield, Biyang sag, Nanxiang basin |
Xin-Wen ZHANG1, Xuan-Bo GAO2,3( ), Yun-Fei YANG1, Chun-An XIE1, Jing-Juan TAN1 |
1. Exploration & Development Research Institute of Henan Oilfield Company, SINOPEC, Zhengzhou 450000, China; 2. Chongqing Key Laboratory of Complicated Oil and Gas Field Exploration and Development, Chongqing University of Science and Technology, Chongqing 401331, China 3. School of Petroleum Engineering, Chongqing University of Science and Technology, Chongqing 401331, China |
|
|
Abstract In this paper the authors mainly studied geochemical characteristics and oil-source rock correlations of 28 oil samples from the Shuanghe oilfield based on the gas chromatography-mass spectrometry and biomarkers. The results indicate that the peaks of C19, C20, C21- tricyclic terpanes gradually rise and the peaks of C27~C29 steranes are characterized by "V" shape of crude oils in the Shuanghe Oilfield. Besides, the concentration of gammacerane is high. The peak shapes of saturates are characterized by "prepeak" and "double peak", and the relative values of diasteranes and tricyclic terpanes are low in oils from upper layer of the Eh3 member. However, the peak shapes of saturates are characterized by "prepeak" and the relative content of diasteranes and tricyclic terpanes is high in oils from lower layer of the Eh3 member. For both the oils of Eh2 member and Eh3 member, the sedimentary environments are reductive and are sourced from higher plant and aquatic organism. However, the maturity of the oil from lower layer of Eh3 member is significantly higher than that of the oil from the upper layer of Eh3 member. In conclusion, the oils from the lower layer of Eh3 member are mainly sourced from the lower layer of Eh3 member, and the oils from the upper layer of Eh3 member are sourced from lower and upper layer of Eh3 member.
|
Received: 20 December 2018
Published: 25 October 2019
|
|
Corresponding Authors:
Xuan-Bo GAO
E-mail: gaoxuanbo@qq.com
|
|
|
|
|
Structural division and regional location of Biyang Sag
|
井号 | 层位 | 深度/m | 饱和烃含量/% | 芳香烃含量/% | 胶质+沥青质含量/% | 饱芳比 | 双浅3 | H21 | 884.8 | 52.62 | 15.69 | 31.79 | 3.35 | 双资1 | H31 | 1345.8 | 72.51 | 10.70 | 16.80 | 6.78 | 双T121 | H31 | 1411.3 | 64.63 | 15.49 | 19.87 | 4.17 | 双T306L | H31 | 1378.0 | 71.90 | 16.27 | 11.83 | 4.42 | 双T306X | H31 | 1378.0 | 68.98 | 16.91 | 14.12 | 4.08 | 双3240 | H32 | 1457.1 | 62.67 | 15.20 | 22.13 | 4.12 | 双资1 | H33 | 1586.8 | 64.93 | 14.73 | 20.32 | 4.41 | 双资1 | H33 | 1614.2 | 57.97 | 12.05 | 29.98 | 4.81 | 双K3103 | H33 | 1649.7 | 67.50 | 14.07 | 18.43 | 4.80 | 双资1 | H34 | 1722.0 | 64.63 | 14.00 | 21.38 | 4.62 | 双资2 | H34 | 1660.8 | 64.63 | 25.56 | 9.81 | 2.53 | 双资2 | H34 | 1799.5 | 74.92 | 13.27 | 11.82 | 5.64 | 双JK452 | H34 | 1730.2 | 68.50 | 11.38 | 20.12 | 6.02 | 双H417L | H34 | 1752.9 | 71.98 | 11.76 | 16.26 | 6.12 | 双H417X | H34 | 1752.9 | 76.10 | 9.61 | 14.30 | 7.92 | 双资2 | H35 | 1965.4 | 79.79 | 9.80 | 10.39 | 8.14 | 双资2 | H35 | 1891.7 | 66.17 | 14.59 | 19.24 | 4.54 | 双资2 | H35 | 1901.0 | 73.44 | 19.08 | 7.48 | 3.85 | 双3-23 | H35 | 1917.6 | 70.94 | 10.33 | 18.73 | 6.87 | 双H494 | H35 | 1758.4 | 62.98 | 20.67 | 16.35 | 3.05 | 双资2 | H36 | 2028.3 | 69.33 | 10.89 | 19.78 | 6.37 | 双资2 | H36 | 2097.9 | 74.20 | 12.17 | 13.64 | 6.10 | 双T4-136 | H36 | 1953.6 | 74.11 | 11.52 | 14.36 | 6.43 | 双观20 | H37 | 2005.0 | 86.14 | 8.33 | 5.53 | 10.34 | 双10-107 | H37 | 1918.8 | 68.84 | 12.60 | 18.56 | 5.46 | 双资2 | H38 | 2342.3 | 77.09 | 9.88 | 13.03 | 7.80 | 双资2 | H38 | 2388.7 | 62.34 | 7.32 | 30.34 | 8.51 | 新泌42 | H38 | 2282.4 | 72.06 | 12.33 | 15.61 | 5.84 |
|
Crude oil group analysis of Biyang Sag
|
|
m/z 85 chromatograms showing saturated hydrocarbons of typical oil samples from Shuanghe Oilfield
|
井号 | 层位 | 深度/m | Pr/ nC17 | Ph/ nC18 | Pr/ Ph | ∑nC21-/ ∑nC22+ | 主峰碳 | OEP | 低碳数甾烷/ 规则甾烷 | 重排甾烷/ 规则甾烷 | C29S/ (S+R) | C29ββ/ (αα+ββ) | Ts/ Tm | C29M/ C30H | Tr/H | C30G/ C30H | C24TeT/ C26Tr | 双浅3 | H21 | 884.8 | 0.53 | 2.88 | 0.38 | 1.43 | C17 | 1.11 | 0.01 | 0.05 | 0.30 | 0.22 | 0.12 | 0.08 | 0.24 | 0.32 | 0.98 | 双资1 | H31 | 1345.8 | 1.60 | 2.77 | 0.40 | 0.42 | C25 | 1.06 | 0.02 | 0.11 | 0.45 | 0.35 | 0.58 | 0.06 | 0.13 | 0.26 | 0.53 | 双T121 | H31 | 1411.3 | 0.49 | 1.45 | 0.41 | 1.35 | C17 | 1.07 | 0.02 | 0.13 | 0.46 | 0.36 | 0.61 | 0.06 | 0.15 | 0.26 | 0.50 | 双T306L | H31 | 1378 | 0.55 | 1.43 | 0.33 | 0.44 | C27 | 1.01 | 0.04 | 0.11 | 0.49 | 0.36 | 0.50 | 0.14 | 0.22 | 0.21 | 0.49 | 双T306X | H31 | 1377.95 | 0.53 | 1.42 | 0.31 | 0.39 | C27 | 1.02 | 0.02 | 0.09 | 0.47 | 0.35 | 0.47 | 0.15 | 0.09 | 0.21 | 0.49 | 双3240 | H32 | 1457.1 | 0.49 | 1.32 | 0.39 | 1.19 | C17 | 0.96 | 0.03 | 0.11 | 0.47 | 0.37 | 0.54 | 0.05 | 0.16 | 0.26 | 0.51 | 双资1 | H33 | 1586.8 | 0.95 | 1.71 | 0.42 | 0.41 | C25 | 1.03 | 0.02 | 0.13 | 0.49 | 0.39 | 0.63 | 0.07 | 0.16 | 0.28 | 0.52 | 双资1 | H33 | 1614.2 | 1.08 | 2.25 | 0.42 | 0.42 | C23 | 1.06 | 0.02 | 0.09 | 0.46 | 0.35 | 0.54 | 0.04 | 0.12 | 0.20 | 0.61 | 双K3103 | H33 | 1649.7 | 0.45 | 1.37 | 0.40 | 1.02 | C17 | 0.96 | 0.02 | 0.12 | 0.47 | 0.37 | 0.59 | 0.05 | 0.12 | 0.22 | 0.52 | 双资1 | H34 | 1722 | 1.09 | 2.16 | 0.38 | 0.31 | C27 | 1.03 | 0.02 | 0.12 | 0.45 | 0.37 | 0.53 | 0.07 | 0.08 | 0.26 | 0.55 | 双资2 | H34 | 1660.8 | 1.47 | 1.93 | 0.32 | 0.27 | C18 | 0.94 | 0.06 | 0.17 | 0.55 | 0.54 | 1.41 | 0.33 | 0.67 | 0.38 | 0.43 | 双资2 | H34 | 1799.5 | 0.88 | 1.02 | 0.67 | 0.51 | C22 | 1.03 | 0.07 | 0.19 | 0.53 | 0.51 | 0.74 | 0.33 | 1.30 | 0.50 | 0.52 | 双JK452 | H34 | 1730.2 | 0.56 | 1.51 | 0.44 | 1.33 | C17 | 0.96 | 0.02 | 0.12 | 0.46 | 0.36 | 0.52 | 0.05 | 0.12 | 0.21 | 0.59 | 双H417L | H34 | 1752.9 | 0.50 | 1.33 | 0.33 | 0.46 | C27 | 1.02 | 0.03 | 0.10 | 0.50 | 0.38 | 0.53 | 0.15 | 0.14 | 0.19 | 0.52 | 双H417X | H34 | 1752.9 | 0.55 | 1.42 | 0.33 | 0.39 | C27 | 1.02 | 0.02 | 0.10 | 0.49 | 0.37 | 0.48 | 0.15 | 0.10 | 0.18 | 0.53 | 双资2 | H35 | 1965.4 | 0.72 | 0.93 | 0.55 | 0.80 | C21 | 1.05 | 0.08 | 0.16 | 0.52 | 0.52 | 0.73 | 0.22 | 1.40 | 0.97 | 0.32 | 双资2 | H35 | 1891.7 | 1.42 | 1.90 | 0.45 | 0.46 | C23 | 1.06 | 0.04 | 0.15 | 0.50 | 0.46 | 0.32 | 0.23 | 0.94 | 0.80 | 0.50 | 双资2 | H35 | 1901 | 1.03 | 1.54 | 0.35 | 0.50 | C23 | 1.06 | 0.02 | 0.15 | 0.50 | 0.43 | 0.24 | 0.23 | 1.29 | 0.73 | 0.44 | 双3-23 | H35 | 1917.6 | 0.33 | 0.61 | 0.55 | 1.64 | C18 | 0.95 | 0.08 | 0.19 | 0.56 | 0.55 | 1.45 | 0.30 | 0.85 | 0.26 | 0.43 | 双H494 | H35 | 1758.4 | 0.62 | 1.77 | 0.46 | 1.58 | C22 | 0.97 | 0.07 | 0.12 | 0.54 | 0.52 | 0.81 | 0.18 | 0.11 | 0.26 | 0.56 | 双资2 | H36 | 2028.3 | 0.87 | 1.69 | 0.34 | 0.60 | C22 | 1.09 | 0.06 | 0.17 | 0.50 | 0.47 | 0.39 | 0.30 | 1.27 | 0.83 | 0.34 | 双资2 | H36 | 2097.9 | 0.86 | 1.41 | 0.46 | 1.05 | C20 | 0.96 | 0.06 | 0.17 | 0.51 | 0.47 | 1.29 | 0.27 | 1.01 | 0.67 | 0.37 | 双T4-136 | H36 | 1953.6 | 0.43 | 1.06 | 0.51 | 1.62 | C17 | 1.05 | 0.04 | 0.13 | 0.49 | 0.43 | 3.35 | 0.19 | 0.96 | 0.71 | 0.42 | 双观20 | H37 | 2005 | 0.46 | 1.31 | 0.42 | 1.73 | C17 | 1.06 | 0.07 | 0.20 | 0.53 | 0.50 | 0.80 | 0.68 | 1.38 | 0.96 | 0.26 | 双10-107 | H37 | 1918.8 | 0.43 | 1.26 | 0.44 | 1.67 | C17 | 1.07 | 0.06 | 0.16 | 0.48 | 0.42 | 0.47 | 0.34 | 1.47 | 1.00 | 0.39 | 双资2 | H38 | 2342.3 | 1.26 | 2.37 | 0.31 | 0.59 | C22 | 1.05 | 0.06 | 0.21 | 0.51 | 0.55 | 0.51 | 0.62 | 1.65 | 0.90 | 0.32 | 双资2 | H38 | 2388.7 | 1.14 | 2.42 | 0.39 | 0.53 | C22 | 1.03 | 0.05 | 0.22 | 0.53 | 0.53 | 0.40 | 0.56 | 1.39 | 0.81 | 0.41 | 新泌42 | H38 | 2282.4 | 0.59 | 1.93 | 0.32 | 2.70 | C17 | 1.06 | 0.00 | 0.00 | 0.50 | 0.46 | 0.30 | 0.07 | 1.00 | 1.08 | 0.38 |
|
Biomarker parameters of oils from Shuanghe Oilfield
|
|
Distribution diagram of Pr/Ph、Pr/nC17、Ph/nC18 of oils from Shuanghe Oilfield
|
|
m/z 217 chromatograms showing steranes of typical oil samples from Shuanghe Oilfield
|
|
Distribution diagram of C27~C29αααR steranes of oils from Shuanghe Oilfield
|
|
Plot of C29ββ/(αα+ββ) versus C29S/(S+R) showing the maturities of oils from Shuanghe Oilfield
|
|
m/z 191 chromatograms showing tricyclic terpanes and hopanes of typical oil samples from Shuanghe Oilfield
|
|
m/z 85 chromatograms showing saturated hydrocarbons of typical source rock and oil samples from Shuanghe Oilfield
|
|
m/z 85 chromatograms showing saturated hydrocarbons of typical source rock and oil samples from Shuanghe Oilfield
|
|
m/z 217 chromatograms showing steranes of typical source rock and oil samples from Shuanghe Oilfield
|
|
Distribution diagram of Pr/Ph、Pr/nC17、Ph/nC18 of source rocks and oils from Shuanghe Oilfield
|
|
Plot of C29ββ/(αα+ββ) versus C29S/(S+R) showing the maturities of source rocks and oils from Shuanghe Oilfield
|
|
Distribution diagram of Pr/Ph versus C30G/ C30H of source rocks and oils from Shuanghe Oilfield
|
|
Distribution diagram of tricyclic terpanes /17α(H)-hopane versus C30G/C30H of source rocks and oils from Shuanghe Oilfield
|
[1] |
Peters K E, Walters C C, Moldowan J M. The biomarker guide: Biomarkers and isotopes in petroleum exploration and earth history[M]. UK: Cambridge University Press, 2005.
|
[2] |
李祖兵, 颜其彬, 罗明高 . 非均质综合指数法在砂砾岩储层非均质性研究中的应用——以双河油田V下油组为例[J]. 地质科技情报, 2007(6):83-87.
|
[2] |
Li Z B, Yan Q B, Luo M G . Reservoir heterogeneity indication applied in researching for heterogeneity of the grail oil :An example of oil group below V in Shuanghe Oilfield[J]. Geological Science and Technology Information, 2007(6):83-87.
|
[3] |
尹太举, 张昌民, 陈程 , 等. 建立储层流动单元模型的新方法[J]. 石油与天然气地质, 1999(2):74-79.
|
[3] |
Yin T J, Zhang C M, Chen C , et al. A new method for founding the model of flow unit reservoirs[J]. OIL & GAS GEOLOGY, 1999(2):74-79.
|
[4] |
赵跃华, 王敏 . 双河油田储层孔隙结构特征分类及影响因素[J]. 石油学报, 1994(4):31-39.
|
[4] |
Zhao Y H, Wang M . Characteristics, classifications and affecting factors of reservoir pore structures in Shuanghe Oilfield[J]. ACTA PETROLEI SINICA, 1994(4):31-39.
|
[5] |
尹太举, 张昌民, 赵红静 , 等. 依据高分辨率层序地层学进行剩余油分布预测[J]. 石油勘探与开发, 2001(4):79-82.
|
[5] |
Yin T J, Zhang C M, Zhao J H , et al. Remaining oil distribution prediction based on high-resolution sequence stratigraphy[J]. Petroleum Exploration and Development, 2001(4):79-82.
|
[6] |
陆建林, 李国强, 樊中海 , 等. 高含水期油田剩余油分布研究[J]. 石油学报, 2001,22(5):48-52.
|
[6] |
Lu J L, Li G Q, Fan Z H , et al. Residual oil distribution research of high water-cut stage in an oilfield[J]. ACTA PETROLEI SINICR, 2001,22(5):48-52.
|
[7] |
袁向春, 杨凤波 . 高含水期注采井网的重组调整[J]. 石油勘探与开发, 2003(5):94-96.
|
[7] |
Yuan X C, Yang F B . Regrouping adjusting of the producer-injector well-pattern in the high aquifer period of oilfield development[J]. Petroleum Exploration and Development, 2003(5):94-96.
|
[8] |
张昌民, 尹太举, 张尚锋 , 等. 双河油田陆架型扇三角洲的沉积机理及向上变粗层序的成因[J]. 石油与天然气地质, 2005(1):99-103.
|
[8] |
Zhang C M, Yin T J, Zhang S F , et al. Sedimentary mechanism of shelf-type fan delta and genesis of coarsening-upward sequence in Shuanghe oilfield[J]. OIL &GAS GEOLOGY, 2005(1):99-103.
|
[9] |
尹伟, 吴胜和, 林社卿 , 等. 双河油田油气成藏机理研究[J]. 石油学报, 2003(5):40-45.
|
[9] |
Yin W W, Wu S H, Lin S Q , et al. Study on mechanism of oil and gas accumulation in Shuanghe Oilfield[J]. ACTA PETROLEI SINICA, 2003(5):40-45.
|
[10] |
林社卿, 杨道庆, 夏东领 , 等. 双河油田地球化学特征及成藏意义[J]. 石油天然气学报:江汉石油学院学报, 2005(2):162-165.
|
[10] |
Lin S Q, Yang D Q, Xia D L , et al. Geochemistry characteristics and significance of hydrocarbon accumulation in Shuanghe Oilfield[J]. Journal of Oil and Gas Technology, 2005(2):162-165.
|
[11] |
董田, 何生, 林社卿 . 泌阳凹陷核桃园组烃源岩有机地化特征及热演化成熟史[J]. 石油实验地质, 2013(2):187-194.
|
[11] |
Dong T, He S, Lin S Q , et al. Organic geochemical characteristics and thermal evolution maturity history modeling of source rocks in Eocene Hetaoyuan Formation of Biyang Sag,Nanxiang Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2013(2):187-194.
|
[12] |
邱荣华, 林社卿, 涂阳发 . 泌阳凹陷油气成藏特征及勘探潜力分析[J]. 石油天然气学报:江汉石油学院学报, 2005(2):158-161.
|
[12] |
Qiu R H, Lin S Q, Tu Y F . Features of hydrocarbon accumulation and analysis on exploration potential in Biyang depression[J]. Journal of Oil and Gas Technology, 2005(2):158-161.
|
[13] |
Gao X, Zhu S, Zhang W , et al. Analysis of crude oils using gas purge microsyringe extraction coupled to comprehensive two dimensional gas chromatography-time-of-flight mass spectrometry[J]. Fuel, 2016,182:788-797.
|
[14] |
Gao X, Pang L, Zhu S , et al. Gas purge microsyringe extraction coupled to comprehensive two-dimensional gas chromatography for the characterization of petroleum migration[J]. Organic Geochemistry, 2017,106:30-47.
|
[15] |
Huang H, Zhang S, Su J . Palaeozoic oil-source correlation in the Tarim Basin, NW China: A review[J]. Organic Geochemistry, 2016,94:32-46.
|
|
|
|