|
|
The application of BP neural network algorithm to the prediction of terrestrial gas hydrate accumulation |
Kang-Wei FU1, Xue-Qiang ZHANG1( ), Yan PENG2 |
1. Institute of Geophysics and Geomatic,China University of Geosciences(Wuhan),Wuhan 430074,China 2. Institute of Geophysical and Geochemical Exploration,CAGS,Langfang 065000,China |
|
|
Abstract During the exploration of terrestrial gas hydrates,Large quantities of geological, geophysical and geochemical data will be produced. The search for hydrate is of significance for effective combination of multi-source information with mathematical methods so as to establish a comprehensive information forecasting model. In this paper, the features which are favorable for gas hydrate accumulation were extracted from geological, geophysical and geochemical data in Muli area, and the corresponding transformation regularity was proposed. BP artificial neural network was used to do the study of gas hydrate prediction, and the effects of these two methods are compared and assessed. The results show that the prediction area is highly correlated with existing drilling result, suggesting that the methods are effective and the transformation regularity is feasible.
|
Received: 13 July 2018
Published: 31 May 2019
|
|
Corresponding Authors:
Xue-Qiang ZHANG
E-mail: 97688628@qq.com
|
|
|
|
|
Neuron model
|
|
Basic structure of neural network
|
|
Schematic diagram of fault in Muli area
|
|
Prediction error result of different number of neurons in the hidden layer
|
| SCH4 | WCH4 | He | Ne | …… | 冻土厚度 | 情况1 | Nan | Nan | Nan | Nan | Nan | Nan | 情况2 | 0.1459 | 0.0071 | 0.1509 | 0.9012 | …… | Nan | …… | …… | …… | …… | …… | …… | …… | 情况N | 0.0430 | 0.0056 | 0.1287 | 0.6141 | …… | 0.5551 |
|
Grid point sample with missing data items
|
钻井 编号 | 输入 | 输出 | AMT高 阻异常 | 断裂 | 冻土 厚度 | He | Ne | SC2 | SC2H6 | SCH4 | WC2 | WC2H6 | WCH4 | DK1,2,3,7 | 1 | 1 | 0.39 | 0.25 | 0.68 | 0.06 | 0.08 | 0.10 | 0.25 | 0.18 | 0.05 | 1 | DK13-11 | 1 | 1 | 0.35 | 0.21 | 0.97 | 0.05 | 0.06 | 0.08 | 0.54 | 0.65 | 0.69 | 1 | DK12-13 | 1 | 0 | 0.30 | 0.26 | 0.72 | 0.08 | 0.10 | 0.12 | 0.28 | 0.20 | 0.06 | 1 | DK9 | 1 | 1 | 0.58 | 0.33 | 0.55 | 0.02 | 0.01 | 0.03 | 0.29 | 0.23 | 0.04 | 1 | DK11-14 | 1 | 0 | 0.61 | 0.22 | 0.49 | 0.03 | 0.03 | 0.05 | 0.23 | 0.15 | 0.01 | 1 | DK10-17 | 1 | 0 | 0.34 | 0.30 | 0.42 | 0.03 | 0.03 | 0.13 | 0.40 | 0.21 | 0.00 | 1 | DK8-19 | 0 | 1 | 0.22 | 0.21 | 0.50 | 0.01 | 0.01 | 0.02 | 0.25 | 0.16 | 0.00 | 1 | DK10 | 0 | 0 | 0.56 | 0.29 | 0.66 | 0.13 | 0.17 | 0.26 | 0.63 | 0.53 | 0.16 | 0 | DK4 | 0 | 0 | 0.51 | 0.24 | 0.63 | 0.03 | 0.04 | 0.05 | 0.53 | 0.58 | 0.26 | 0 | DK10-16 | 0 | 1 | 0.32 | 0.38 | 0.61 | 0.22 | 0.28 | 0.29 | 0.71 | 0.36 | 0.01 | 0 | DK10-18 | 0 | 1 | 0.34 | 0.09 | 0.62 | 0.02 | 0.01 | 0.02 | 0.45 | 0.42 | 0.34 | 0 | DK6 | 0 | 1 | 0.01 | 0.31 | 0.51 | 0.01 | 0.01 | 0.02 | 0.36 | 0.30 | 0.12 | 0 | DK7-20 | 0 | 0 | 0.18 | 0.34 | 0.49 | 0.01 | 0.01 | 0.02 | 0.51 | 0.27 | 0.00 | 0 | DK5-22 | 0 | 0 | 0.00 | 0.28 | 0.64 | 0.03 | 0.02 | 0.03 | 0.27 | 0.22 | 0.04 | 0 | SK0 | 1 | 1 | 0.43 | 0.26 | 0.62 | 0.05 | 0.07 | 0.08 | 0.28 | 0.25 | 0.08 | 0 | SK1 | 0 | 1 | 0.32 | 0.22 | 0.86 | 0.05 | 0.06 | 0.08 | 0.43 | 0.47 | 0.44 | 0 | SK2 | 1 | 1 | 0.51 | 0.38 | 0.59 | 0.02 | 0.01 | 0.03 | 0.34 | 0.28 | 0.06 | 0 | DK5 | 0 | 0 | 0.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | DK11 | 0 | 1 | 0.24 | 0.12 | 0.79 | 0.01 | 0.01 | 0.03 | 0.50 | 0.29 | 0.07 | 0 |
|
Sample table
|
|
Prediction chart of hydrate accumulation possibility based on BP neural network
|
[1] |
徐明才, 刘建勋, 柴铭涛 , 等. 青海省天峻县木里地区天然气水合物地震响应特征[J]. 地质通报, 2011,30(12):1910-1917.
|
[1] |
Xu M C, Liu J X , Chai MT, et, al. Seismic characteristics of natural gas hydrate in Muli area, Tianjun County, Qinghai Province[J]. Geological Bulletin of China, 2011,30(12):1910-1917.
|
[2] |
许振奎, 张胜业 . 天然气水合物模型的瞬变电磁响应[J]. 地球物理学进展, 2008,23(5):1568-1574.
|
[2] |
Xu Z K, Zhang S Y . On the research of marine gas hydrate deposits using sea-floor transient electromagnetic method[J]. Progress in Geophysics, 2008,23(5):1568-1574.
|
[3] |
裴发根, 何梅兴, 仇根根 , 等. 青藏高原冻土区AMT探测天然气水合物采集试验[J]. 物探与化探, 2017,41(6):1113-1120.
|
[3] |
Pei F G, He M X, Qiu G G , et al. AMT acquisition experimental study of gas hydrate exploration in the permafrost region of the Tibetan Plateau[J]. Geophysical and Geochemical Exploration, 2017,41(6):1113-1120.
|
[4] |
杨志斌, 周亚龙, 孙忠军 , 等. 祁连山木里地区天然气水合物地球化学勘查[J]. 物探与化探, 2013,37(6):988-992.
|
[4] |
Yang Z B, Zhou Y L, Sun Z J , et al. Geochemical exploration of natural gas hydrate in Muli permafrost area in the Qilian mountain[J]. Geophysical and Geochemical Exploration, 2013,37(6):988-992.
|
[5] |
Cen, Y, Wu, T, Zhao, H Q, et al. Methane analysis using SCIAMACHY data in permafrost area of China [C]//SPIE Asia-Pacific Remote Sensing, International Society for Optics and Photonics, 2012: 85242I-85242I.
|
[6] |
方慧, 孙忠军, 徐明才 , 等. 冻土区天然气水合物勘查技术研究主要进展与成果[J]. 物探与化探, 2017,41(6):991-997.
|
[6] |
Fang H, Sun Z J, Xu M C , et al. Main achievements of gas hydrate exploration technology in permafrost regions of China[J]. Geophysical and Geochemical Exploration, 2017,41(6):991-997.
|
[7] |
何梅兴, 方慧, 裴发根 , 等. 青海木里地区冻土层、断层分布特征与天然气水合物成藏条件分析[J]. 物探与化探, 2017,41(6):1133-1141.
|
[7] |
He M X, Fang H, Pei F G , et al. Fault and frozen soil distribution characteristics of Muli natural gas hydrate area in Qinghai Province[J]. Geophysical and Geochemical Exploration, 2017,41(6):1133-1141.
|
[8] |
付超, 于兴河, 梁金强 , 等. 南海北部神狐海域不同类型水道及其天然气水合物成藏的差异[J]. 海洋地质与第四纪地质, 2017,37(6):168-177.
|
[8] |
Fu C, Yu X H, Liang J Q , et al. Types of sea-bottom channels and related gas hydrate accumulations in the Shenu area, South China Sea(SCS)[J]. Marine Geology & Quaternary Geology, 2017,37(6):168-177.
|
[9] |
张伟, 梁金强, 陆敬安 , 等. 中国南海北部神狐海域高饱和度天然气水合物成藏特征及机制[J]. 石油勘探与开发, 2017,44(5):670-680.
|
[9] |
Zhang W, Liang J Q, Lu J A , et al. Accumulation features and mechanisms of high saturation natural gas hydrate in Shenhu Area, northern South China Sea[J]. Petroleum Exploration and Development, 2017,44(5):670-680.
|
[10] |
Mcculloch W S, Pitts W . A logical calculus of the ideas immanent in nervous activity[J]. The bulletin of mathematical biophysics, 1943,5(4):115-133.
|
[11] |
杨文采 . 神经网络算法在地球物理反演中的应用[J]. 石油物探, 1995,34(2):116-120.
|
[11] |
Yang W C . Application of neural network algorithms to geophysical inversion[J]. Geophysical Prospecting for Petroleum, 1995,34(2):116-120.
|
[12] |
Hornik K, Stinchcombe M, White H . Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989,2(5):359-366.
|
[13] |
吴闯 . 青海省木里地区天然气水合物构造成藏机制[D]. 南京:南京大学, 2017.
|
[13] |
Wu C . The structural accumulation mechanism of the natural gas hydrates in Muli Region of Qinghai Province[D]. Nanjing:Nanjing University, 2017
|
[14] |
卢振权, 李永红, 王伟超 , 等. 青海木里三露天冻土天然气水合物成藏模式研究[J].现代地质, 2015(5):1014-1023.
|
[14] |
Lu Z Q, Li Y H, Wang W C , et al. Study on the Accumulation Pattern for Permafrost-associated Gas Hydrate in Sanlutian of Muli,Qinghai[J].Geoscience, 2015(5):1014-1023.
|
[15] |
伊海生, 时志强, 王造成 , 等. 青藏高原多年冻土区天然气水合物形成潜力及远景[J].西藏地质, 2002(1):45-52.
|
[15] |
Yi H S, Shi Z Q, Wang Z Q , et al. Potentiality and perspective of natural gashydrate in ever-frozen ground region of the QingHai-Tibet plateau[J].Tibet Geology, 2002(1):45-52.
|
[16] |
吴青柏, 蒋观利, 蒲毅彬 , 等. 青藏高原天然气水合物的形成与多年冻土的关系[J]. 地质通报, 2006,25(1-2):29-33.
|
[16] |
Wu Q B, Jiang G L, Pu Y B , et al. Ralationshipo between permafrost and gas hydrates on Qinghai-TibetPlateau[J]. Geological Bulletin of China, 2006,25(1-2):29-33.
|
[17] |
方慧, 裴发根, 何梅兴 , 等. 音频大地电磁测深法探测冻土区天然气水合物有效性实验[J]. 物探与化探, 2017,41(6):1068-1074.
|
[17] |
Fang H, Pei F G, He M X , et al. Effectiveness of audio magnetotelluric sounding for detecting gas hydrate in permafrost regions[J]. Geophysical and Geochemical Exploration, 2017,41(6):1068-1074.
|
[18] |
卢振权, 唐世琪, 王伟超 , 等. 青海木里三露天冻土天然气水合物气源性质研究[J].现代地质, 2015(5):995-1001.
|
[18] |
Lu Z Q, Tang S Q, Wang W C , et al. Study on the nature of gas source for permafrost-associated gas hydrate in Sanlutian of Muli,Qinghai[J].Geoscience, 2015(5):995-1001.
|
[19] |
唐世琪, 卢振权, 王伟超 , 等. 青海木里三露天冻土区天然气水合物钻孔岩心顶空气组成及指示意义[J].现代地质, 2015(5):1201-1213.
|
[19] |
Tang S Q, Lu Z Q, Wang W C , et al. The indicative significance of gas composition of headspace gases from the gas hydrate drilling holes in the Sanlutian Mine of the Muli Mining area, Qinghai[J].Geoscience, 2015(5):1201-1213.
|
[20] |
阴江宁, 肖克炎, 李楠 , 等. BP神经网络在化探数据分类中的应用[J]. 地质通报, 2010,29(10):1564-1571.
|
[20] |
Yin J N, Xiao K Y, Li N, Zou W . Application of BP neural network in the classification of geo-chemical survey data[J]. Geological Bulletin of China, 2010,29(10):1564-1571.
|
[1] |
Zhi-Bin SHA, Xiao-Ming WAN, Zhong-Quan ZHAO, Jin-Qiang LIANG, Rui-Zhao YANG, Yu BAI, Yi CHAI. The application of pre-stack simultaneous inversion to gas hydrates reservoir prediction in the western Pearl River Mouth basin[J]. Geophysical and Geochemical Exploration, 2019, 43(3): 476-485. |
[2] |
Fu-Gui ZHANG, Ya-Long ZHOU, Shun-Yao ZHANG, Rui-Ling TANG, Hui-Yan WANG, Zhong-Jun SUN. Thermal-release mercury—An new tool for natural gas hydrate exploration[J]. Geophysical and Geochemical Exploration, 2019, 43(2): 329-337. |
|
|
|
|