Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (1): 1-13    DOI: 10.11720/wtyht.2025.2257
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
六盘山东麓冲积扇晚更新世以来地层结构及其活动性特征
姚子恒1(), 董晓朋2,3,4(), 杨勇5
1.江苏省地质环境勘查院,江苏 南京 211100
2.中国地质科学院 地质力学研究所,北京 100081
3.自然资源部 古地磁与古构造重建重点实验室,北京 100081
4.自然资源部 活动构造与地质安全重点实验室,北京 100081
5.宁夏回族自治区基础地质调查院,宁夏 银川 750021
Stratigraphic architecture and activity of the alluvial fan in the eastern piedmont of the Liupan Mountains since the Late Pleistocene
YAO Zi-Heng1(), DONG Xiao-Peng2,3,4(), YANG Yong5
1. Geological Environment Exploration Institute of Jiangsu Province, Nanjing 211100, China
2. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
3. Key Laboratory of Paleomagnetism and Tectonic Reconstruction, Ministry of Natural Resources, Beijing 100081, China
4. Key Laboratory of Active Tectonics and Geological Safety, Ministry of Natural Resources, Beijing 100081, China
5. Geological Survey Institute of Ningxia Hui Autonomous Region, Yinchuan 750021, China
全文: PDF(11949 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

中国中、西部城市或城镇居民区有很多位于山前冲积扇形成的冲积平原之上,揭露冲积扇的地质结构和稳定性对城市建设规划和土地合理利用具有重要意义。六盘山东麓冲积扇上分布有固原市城镇居民区和村落,人口密集。冲积扇发育多套事件沉积层,记录了构造活动和气候转变控制下冲积扇的活动性特征。本文通过野外地质调查、光释光测年、可控源音频大地电测深和常规氡气测量等手段,揭露了六盘山东麓冲积扇地层结构,厘定了晚更新世以来两期事件沉积层,沉积时代分别为~43.33 ka B.P.和22.92~20.72 ka B.P.。基于可控源音频大地电磁测量和常规氡气测量结果,揭示在海原断裂带和清水河断裂活动的影响下,六盘山东麓冲积扇至今仍存在较高活动性。该研究结果可以为六盘山地区地壳稳定性评价、地质灾害防治和工程设施建设提供基础数据支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚子恒
董晓朋
杨勇
关键词 六盘山东麓冲积扇晚更新世地层结构事件沉积活动性    
Abstract

Many cities or urban residential areas in central and western China reside in alluvial plains formed from piedmont alluvial fans. Hence, revealing the stratigraphic architectures and stability of alluvial fans holds critical significance for urban construction planning and rational land use. The alluvial fan in the eastern piedmont of the Liupan Mountains hosts the urban residential areas and villages of Guyuan City, with a dense population. Moreover, the alluvial fan develops several event deposits recording the activity of the alluvial fan under tectonic movements and climatic changes. Through field geological survey, optically stimulated luminescence dating, controlled source audio-frequency magnetotellurics (CSAMT), and conventional radon measurement, this study revealed the stratigraphic architecture of the alluvial fan and its two-phase event deposits (~43.33 ka B.P. and 22.92~20.72 ka B.P) since the Late Pleistocene. As indicated by the CSAMT and conventional radon measurement results, the alluvial fan still exhibits high activity under the influence of the Haiyuan and Qingshuihe faults. The results of this study provide fundamental data for crustal stability assessment, prevention and control of geologic hazards, and engineering construction in the Liupanshan area.

Key wordsalluvial fan in the eastern piedmont of the Liupan Mountains    Late Pleistocene    stratigraphic architecture    event deposit    activity
收稿日期: 2023-06-08      修回日期: 2024-01-16      出版日期: 2025-02-20
ZTFLH:  P548  
基金资助:中国地质调查局地质调查项目(DD20242497);中国地质调查局地质调查项目(DD20221644);中国地质科学院所长基金(DZLXJK202104)
通讯作者: 董晓朋(1989-),男,博士,副研究员,主要从事沉积盆地与大地构造演化方面的研究工作。Email:dongxiaopeng_geo@163.com
作者简介: 姚子恒(1988-),男,工程师,从事基础地质、水文地质、工程地质、环境地质研究工作。Email:yaozhdzhjy@163.com
引用本文:   
姚子恒, 董晓朋, 杨勇. 六盘山东麓冲积扇晚更新世以来地层结构及其活动性特征[J]. 物探与化探, 2025, 49(1): 1-13.
YAO Zi-Heng, DONG Xiao-Peng, YANG Yong. Stratigraphic architecture and activity of the alluvial fan in the eastern piedmont of the Liupan Mountains since the Late Pleistocene. Geophysical and Geochemical Exploration, 2025, 49(1): 1-13.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.2257      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I1/1
Fig.1  六盘山及清水河盆地大地构造背景
a—六盘山大地构造位置;b—六盘山及邻区断裂体系
Fig.2  六盘山地区及清水河盆地区域地质简图
样品号 埋深/m w(U)/10-6 w(Th)/10-6 w(K)/% 实测含水
量/%
测试粒径/
μm
测试
方法
环境剂量率/
(Gy·ka-1)
等效剂量/
(Gy)
年龄/ka
BGY-OSL-1 0.9 2.21±0.11 9.38±0.60 1.99±0.34 1.24 4~11 SMAR 3.98±0.42 82.47±5.81 20.71±2.61
BGY-OSL-2 2.1 2.53±0.14 9.90±0.60 1.94±0.78 2.22 4~11 SMAR 4.10±0.71 93.92±4.42 22.92±4.09
SC-OSL-1 10 3.16±0.21 11.00±0.40 1.95±0.99 14.00 4~11 SMAR 3.78±0.75 163.63±11.62 43.33±9.13
Table 1  六盘山东麓冲积扇晚更新世以来事件沉积光释光测年结果
点号 D/m 测量值/(Bq·m-3) 点号 D/m 测量值/(Bq·m-3) 点号 D/m 测量值/(Bq·m-3) 点号 D/m 测量值/(Bq·m-3)
1 0 2971.66 157 3119.92 4098 313 6237.29 2348 469 9361.98 2588
3 39.64 1821.34 159 3159.66 2588 315 6278.1 2204 471 9392.32 1605
5 79.55 2684.08 161 3199.66 3091 317 6317.4 2396 473 9440.1 1437
7 120.15 2540.29 163 3239.25 8603 319 6357.99 2276 475 9474.48 1509
9 159.94 1461.86 165 3278.83 6518 321 6398.23 2779 477 9515.94 1509
11 199.69 1917.2 167 3319.44 3067 323 6437.87 3522 479 9555.77 1989
13 239.38 3498.89 169 3359.53 3570 325 6477.59 5655 481 9595.46 1485
15 279.28 2060.99 171 3399.45 5152 327 6517.73 4036 483 9635.1 1509
17 319.88 2588.22 173 3439.53 4721 329 6557.21 3355 485 9675.15 2588
19 359.28 4289.73 175 3479.53 4601 331 6597.94 3840 487 9715.43 2779
21 399.29 2803.9 177 3518.91 3426 333 6637.97 4337 489 9755.75 1773
23 439.69 2492.36 179 3559.9 1917 335 6677.41 2180 491 9791.33 1605
25 479.44 2492.36 181 3598.93 3019 337 6717.79 2037 493 9835.2 1485
27 519.65 3163.38 183 3639.57 4673 339 6757.64 2060 495 9875.11 1869
29 559.86 6039.18 185 3679.22 5104 341 6797.46 3450 497 9915.01 2156
31 600.1 6159 187 3719.21 6949 343 6837.63 4673 499 9957.41 3019
33 640.03 4816.96 189 3759.17 4745 345 6877.61 2276 501 9995.67 2732
35 679.77 2923.73 191 3799.86 3091 347 6917.4 1821 503 10035.44 1270
37 719.65 2468.39 193 3839.54 1485 349 6958.14 2899 505 10075.11 958
39 759.61 2252.71 195 3879.1 1581 351 6997.61 3954 507 10115.07 1389
41 799.24 8100.17 197 3919.71 1725 353 7037.63 2899 509 10155.73 1845
43 840.3 13827.8 199 3958.89 2492 355 7077.35 1078 511 10195.65 1311
45 879.37 11455.27 201 3999.55 1797 357 7117.61 2060 513 10235.43 1287
47 919.57 14642.61 203 4039.6 2300 359 7136.66 2060 515 10275.21 1581
49 960.27 12749.38 205 4079.34 2708 361 7197.41 1893 517 10314.66 1366
51 1000.1 6398.65 207 4119.21 4241 363 7237.37 4002 519 10355.26 1126
53 1039.72 6015.21 209 4159.28 3259 365 7277.76 3187 521 10394.64 958
55 1079.49 1174 211 4199.5 3474 367 7318.1 2180 523 10435.17 1318
57 1119.57 2875 213 4239.72 6566 369 7357.49 3474 525 10475.06 1461
59 1159.34 3211 215 4279.43 4577 371 7397.49 4385 527 10514.54 2060
61 1199.19 2708 217 4319.29 5943 373 7437.46 1821 529 10554.71 1342
63 1239.57 1893 219 4359.18 3978 375 7477.15 1509 531 10594.28 958
65 1279.48 2851 221 4399.61 4098 377 7517.99 2108 533 10634.45 1773
67 1319.29 2660 223 4439.67 6039 379 7557.29 1270 535 10674.3 3139
69 1359.75 2660 225 4479.16 11095 381 7597.45 886 537 10714.86 2971
71 1399.4 5583 227 4519.37 12557 383 7637.4 1222 539 10754.79 1533
73 1440.1 4960 229 4559.27 6853 385 7677.48 3906 541 10794.57 1533
75 1479.84 3091 231 4599.47 6734 387 7717.46 2899 543 10834.69 1797
77 1519.47 2492 233 4639.26 9034 389 7757.65 2228 545 10874.15 3019
79 1559.45 4409 235 4679.04 5128 391 7797.56 3163 547 10913.93 2156
81 1600.13 6782 237 4718.75 3858 393 7837.09 3139 549 10954.63 3091
83 1639.99 4529 239 4759.14 5895 395 7878.17 2636 551 10993.83 2899
85 1679.48 2204 241 4799.17 3738 397 7917.69 2540 553 11034.51 2084
87 1719.56 814 243 4839.03 3463 399 7957.98 1965 555 11073.71 1797
89 1759.62 4217 245 4879.6 3331 401 7997.34 1869 557 11114.61 263
91 1798.94 7477 247 4919.46 3187 403 8037.11 1437 559 11153.88 575
93 1851.91 3235 249 4959.04 4649 405 8077.79 2084 561 11193.79 5799
95 1879.55 1342 251 4999.35 4002 407 8117.06 2468 563 11234.44 9609
97 1920.22 6182 253 5038.94 1749 409 8157.33 2851 565 11273.76 4193
99 1959.44 8723 255 5079.4 2013 411 8196.93 1629 567 11313.61 7261
101 1999.94 5487 257 5119.03 3163 413 8237.76 2420 569 11354.37 12773
103 2039.59 5056 259 5158.73 5607 415 8277.16 2995 571 11393.47 11263
105 2079.29 4721 261 5198.72 4601 417 8317.58 2540 573 11433.51 13923
107 2119.54 5320 263 5238.55 4433 419 8369.19 3115 575 11473.73 3858
109 2160.04 3403 265 5279.02 3115 421 8397.36 2827 577 11513.48 3067
111 2198.86 2229 267 5318.31 2444 423 8437.11 2516 579 11553.58 2228
113 2239.06 3474 269 5358.42 3019 425 8477.07 1749 581 11593.17 3307
115 2279.54 5056 271 5398.7 2204 427 8516.45 2037 583 11633.09 5224
117 2319.26 6782 273 5438.49 2348 429 8557.14 718 585 11673.58 2564
119 2359.29 3906 275 5478.83 2588 431 8596.4 2108 587 11713.53 1701
121 2399.81 4217 277 5518.8 2708 433 8636.65 2444 589 11753.27 2060
123 2440.01 4193 279 5558.11 2468 435 8677.25 2420 591 11793.07 3450
125 2479.24 3594 281 5598.45 3882 437 8716.97 1485 593 11833.04 2300
127 2519.52 7501 283 5638.95 3690 439 8756.45 1318 595 11873.76 1773
129 2558.91 12030 285 5678.73 2348 441 8796.98 1222 597 11913.03 2060
131 2599.37 10496 287 5718.86 2420 443 8836.32 1701 599 11953.28 1917
133 2639.5 9681 289 5757.95 3235 445 8876.29 2108 601 11993.48 2108
135 2679.23 9130 291 5798.73 2851 447 8916.56 1917 603 12033.31 1917
137 2718.9 17039 293 5837.75 1030 449 8956.39 3067 605 12072.88 2636
139 2759.54 11023 295 5877.91 1629 451 9003.78 2947 607 12112.6 2180
141 2799.23 10832 297 5917.63 1941 453 9035.46 2540 609 12153.02 1677
143 2839.96 13636 299 5957.88 2108 455 9074.65 2584 611 12193.07 2588
145 2879.56 8723 301 5998.43 2156 457 9112.85 2971 613 12232.63 3690
147 2919.51 6590 303 6037.61 3594 459 9153.52 2396 615 12272.73 3570
149 2963.54 5200 305 6078.05 3283 461 9199.96 2180 617 12312.8 2540
151 2999.44 2875 307 6117.92 2276 463 9227.83 1893 619 12352.29 2276
153 3039.39 4193 309 6157.49 2540 465 9272.66 1509 621 12392.24 2132
155 3079.76 5416 311 6197.89 2204 467 9315.84 1677 623 12432.49 2037
Table 2  常规氡气测量实测点测量数据
序号 L P 相对百分误差/% 序号 L P 相对百分误差/%
1 RS01 17 -22.79 10 RS01 303 -17.12
2 RS01 41 -16.27 11 RS01 357 -24.53
3 RS01 55 -18.41 12 RS01 429 -10.33
4 RS01 77 22.65 13 RS01 479 -8.38
5 RS01 123 10.31 14 RS01 511 13.52
6 RS01 159 -27.41 15 RS01 535 18.50
7 RS01 199 29.47 16 RS01 567 -19.71
8 RS01 221 -24.16 17 RS01 623 12.74
9 RS01 257 -27.04
Table 3  常规氡气测量质量检查点测量数据统计
Fig.3  清水河盆地晚更新世末以来沉积序列(年代学数据来自Tian et al.[41])
Fig.4  六盘山东麓晚更新世末冲积扇地层结构及砾石层沉积时代
Fig.5  六盘山东麓冲积扇晚更新世末地层沉积特征
a—萨拉乌苏组三段顶面发育侵蚀间断面,上覆晚更新世末砾石层;b—萨拉乌苏组三段湖陆过渡相黏土质粉砂,发育有生物钻穴遗迹和石膏晶体;c—晚更新世末冲积相砾石层,砾石主要岩性组成为灰绿色泥灰岩和板岩,呈叠瓦状排列,并发育斜层理;d—晚更新世末河流冲积相冲积层,发育有斜层理;e—晚更新世末河流冲积相冲积层,发育有透镜状层理;f—晚更新世末河流冲积相冲积层,发育有平行层理;g—晚更新世末洪积相细砂层,发育有生物钻穴等生物遗迹和平行层理;h—六盘山东麓冲积扇上晚更新世末马兰黄土,发育有柱状节理
Fig.6  六盘山东麓冲积扇可控源音频大地电磁测量剖面(GC02)特征
Fig.7  六盘山东麓冲积扇晚更新世末以来活动性与断裂带构造活动、气候变化序列对比关系
(海原断裂带晚更新世末活动性据Zhang et al.[22]、冉永康等[43]、向宏发等[18]、张培震等[44]、肖骏等[23];古里雅冰芯气候记录据姚檀栋等[46];深海氧同位素气候记录据Martinson et al.[54])
Fig.8  六盘山东麓冲积扇地球物理特征及氡气测量特征
a—可控源大地音频电测深解译剖面;b—氡气值变化曲线
[45] Fang X M, Dai X R, Li J J, et al. The abrupt and unstable evolution of Asian Monsoon: A case study of the soil occurrence during the last interglacial[J]. Science in China:Series D, 1996(2):154-160.
[46] 姚檀栋, Thompson L G, 施雅风, 等. 古里雅冰芯中末次间冰期以来气候变化记录研究[J]. 中国科学:D辑, 1997, 27(5):447-452.
[46] Yao T D, Thompson L G, Shi Y F, et al. Study of the climatic changing since interglacial recorded by the Gurya ice core[J]. Science in China:Series D, 1997, 27(5):447-452.
[47] 鹿化煜, 安芷生, 王晓勇, 等. 最近14 Ma青藏高原东北缘阶段性隆升的地貌证据[J]. 中国科学:D辑, 2004, 34(9):855-864.
[47] Lu H Y, An Z S, Wang X Y, et al. Geomorphological evidence of the staged uplift of the northeastern margin of Qinghai-Tibet Plateau in recent 14 Ma[J]. Science in China:Series D, 2004, 34(9):855-864.
[48] 施雅风, 李吉均, 李炳元, 等. 晚新生代青藏高原的隆升与东亚环境变化[J]. 地理学报, 1999, 54(1):10-21.
[48] Shi Y F, Li J J, Li B Y, et al. Uplift of the Qinghai-Xizang (Tibetan) plateau and East Asia environmental change during late Cenozoic[J]. Acta Geographica Sinica, 1999, 54(1):10-21.
[49] 李炳元, 张青松, 王富葆, 等. 喀喇昆仑山—西昆仑山地区湖泊演化[J]. 第四纪研究, 1991,(1):64-71.
[49] Li B Y, Zhang Q S, Wang F B, et al. Evolution of the lakes in the Karakorumwest Kunlun mountains[J]. Quaternary Sciences, 1991, 11(1):64-71.
[50] 靳鹤龄, 李明启, 苏志珠, 等. 220ka以来萨拉乌苏河流域地层磁化率与气候变化[J]. 中国沙漠, 2006, 26(5):680-686.
[50] Jin H L, Li M Q, Su Z Z, et al. Climatic change reflected by stratigraphical magnetic susceptibility in Salawusu river basin,North China since 220ka BP[J]. Journal of Desert Research, 2006, 26(5):680-686.
[51] 崔加伟, 李振宏, 刘锋, 等. 宁夏红寺堡盆地萨拉乌苏组地层时代重新厘定及意义[J]. 地质力学学报, 2018, 24(2):283-292.
[51] Cui J W, Li Z H, Liu F, et al. Redefinition of the sedimentary time of the salawusu formation in the Hongsibu Basin,Ningxia and its significance[J]. Journal of Geomechanics, 2018, 24(2):283-292.
[52] 靳鹤龄, 李明启, 苏志珠, 等. 萨拉乌苏河流域地层沉积时代及其反映的气候变化[J]. 地质学报, 2007, 81(3):307-315.
[52] Jin H L, Li M Q, Su Z Z, et al. Sedimentary age of strata in the salawusu river basin and climatic changing[J]. Acta Geologica Sinica, 2007, 81(3):307-315.
[53] 刘冰, 靳鹤龄, 孙忠, 等. 青藏高原东北部共和盆地风成沉积地球化学特征及其揭示的气候变化[J]. 地球科学进展, 2012, 27(7):788-799.
doi: 10.11867/j.issn.1001-8166.2012.07.0788
[53] Liu B, Jin H L, Sun Z, et al. Geochemical characteristics of aeolian deposits in Gonghe Basin,northeastern Qinghai-Tibetan Plateau and the indicating climatic changes[J]. Advances in Earth Science, 2012, 27(7):788-799.
doi: 10.11867/j.issn.1001-8166.2012.07.0788
[54] Martinson D G, Pisias N G, Hays J D, et al. Age dating and the orbital theory of the ice ages:Development of a high-resolution 0 to 300,000 year chronostratigraphy[J]. Quaternary Research,27:1-29.
[1] 李新坡. 中国北方地区冲积扇地貌发育特征与影响因素分析[D]. 北京: 北京大学, 2007.
[1] Li X P. Geomorphological development characteristics and influencing factors of alluvial fans in Northern China[D]. Beijing: Peking University, 2007.
[2] Malik J N, Sohoni P S, Merh S S, et al. Active tectonic control on alluvial fan architecture along Kachchh mainland Hill Range,Western India[J]. Zeitschrift Für Geomorphologie, 2001, 45(1):81-100.
[3] Viseras C, Calvache M L, Soria J M, et al. Differential features of alluvial fans controlled by tectonic or eustatic accommodation space:Examples from the Betic Cordillera,Spain[J]. Geomorphology, 2003, 50(1-3):181-202.
[4] White K, Drake N, Millington A, et al. Constraining the timing of alluvial fan response to late quaternary climatic changes,southern Tunisia[J]. Geomorphology, 1996, 17(4):295-304.
[5] Harvey A M, Silva P G, Mather A E, et al. The impact of Quaternary sea-level and climatic change on coastal alluvial fans in the Cabo de Gata ranges,southeast Spain[J]. Geomorphology, 1999, 28(1-2):1-22.
[6] Nott J F, Thomas M F, Price D M. Alluvial fans,landslides and late Quaternary climatic change in the wet tropics of northeast Queensland[J]. Australian Journal of Earth Sciences, 2001, 48(6):875-882.
[7] 闫震鹏, 赵云章, 焦红军, 等. 黄河冲积扇对中原城市群的地质控制作用[J]. 地学前缘, 2010, 17(6):278-285.
[7] Yan Z P, Zhao Y Z, Jiao H J, et al. The geological control of the Yellow River alluvial fan on central plain cities[J]. Earth Science Frontiers, 2010, 17(6):278-285.
[8] 王初生, 叶为民, 杜灏洁. 上海城市地下工程环境地质效应研究[J]. 地下空间与工程学报, 2005, 1(2):283-286.
[8] Wang C S, Ye W M, Du H J. The urban geo-environmental effect of underground engineering in Shanghai City[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(2):283-286.
[9] 刘立才, 陈鸿汉, 杨仪, 等. 沉积环境和人类活动对苏锡常地区浅层地下水的水质效应[J]. 中国地质, 2009, 36(4):915-919.
[9] Liu L C, Chen H H, Yang Y, et al. The effects of sedimentary environment and human activity on shallow groundwater quality in Suxichang area[J]. Geology in China, 2009, 36(4):915-919.
[10] 闫震鹏. 地质构造对黄河下游悬河稳定性的控制作用[J]. 人民黄河, 2009, 31(7):16-17,19.
[10] Yan Z P. Control function of geologic structure to the stability of elevated section of the lower Yellow River[J]. Yellow River, 2009, 31(7):16-17,19.
[11] Zhang P Z, Burchfiel B C, Molnar P, et al. Late Cenozoic tectonic evolution of the Ningxia-Hui autonomous region,China[J]. Geological Society of America Bulletin, 1990, 102(11):1484-1498.
[12] 宋友桂, 方小敏, 李吉均, 等. 晚新生代六盘山隆升过程初探[J]. 中国科学:D辑, 2001(B12):142-148.
[12] Song Y G, Fang X M, Li J J, et al. Study on uplift process of Liupan Mountain in late Cenozoic[J]. Science in China:Series D, 2001(B12):142-148.
[13] Zheng D W, Zhang P Z, Wan J L, et al. Rapid exhumation at -8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology:Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 2006, 248(1-2):198-208.
[14] 滕吉文, 阮小敏, 张永谦, 等. 青藏高原地壳与上地幔成层速度结构与深部层间物质的运移轨迹[J]. 岩石学报, 2012, 28(12):4077-4100.
[14] Teng J W, Ruan X M, Zhang Y Q, et al. The stratificational velocity structure of crust and covering strata of upper mantle and the orbit of deep interaquifer substance locus of movement for Tibetan Plateau[J]. Acta Petrologica Sinica, 2012, 28(12):4077-4100.
[15] Wang W, Kirby E, Peizhen Z, et al. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau:Evidence for basin formation during Oligocene transtension[J]. Geological Society of America Bulletin, 2013, 125(3/4):377-400.
[16] 王椿镛, 李永华, 楼海. 与青藏高原东北部地球动力学相关的深部构造问题[J]. 科学通报, 2016, 61(20):2239-2263.
[16] Wang C Y, Li Y H, Lou H. Issues on crustal and upper-mantle structures associated with geodynamics in the northeastern Tibetan Plateau[J]. Chinese Science Bulletin, 2016, 61(20):2239-2263.
[17] 王伟涛, 张培震, 郑德文, 等. 青藏高原东北缘海原断裂带晚新生代构造变形[J]. 地学前缘, 2014, 21(4):266-274.
[17] Wang W T, Zhang P Z, Zheng D W, et al. Late Cenozoic tectonic deformation of the Haiyuan fault zone in the northeastern margin of the Tibetan Plateau[J]. Earth Science Frontiers, 2014, 21(4):266-274.
[18] 向宏发, 虢顺民, 张秉良, 等. 六盘山东麓活动逆断裂构造带晚第四纪以来的活动特征[J]. 地震地质, 1998, 20(4):321-327.
[18] Xiang H F, Guo S M, Zhang B L, et al. Active features of the eastern Liupanshan piedmont reverse fault zone since late quaternary[J]. Seismology and Geology, 1998, 20(4):321-327.
[19] 李传友. 青藏高原东北部几条主要断裂带的定量研究[D]. 北京: 中国地震局地质研究所, 2005.
[19] Li C Y. Quantitative study on several main fault zones in the northeast of Qinghai-Tibet Plateau[D]. Beijing: Institute of Geology,China Earthquake Administration, 2005.
[20] 赵秋晨. 六盘山东麓泾河上游河流阶地的形成年代及新构造运动意义[D]. 北京: 中国地质大学(北京), 2015.
[20] Zhao Q C. Formation age of river terraces in the upper reaches of Jinghe River at the eastern foot of Liupanshan Mountain and its significance of neotectonic movement[D]. Beijing: China University of Geosciences(Beijing), 2015.
[21] 张培震, 郑德文, 尹功明, 等. 有关青藏高原东北缘晚新生代扩展与隆升的讨论[J]. 第四纪研究, 2006, 26(1):5-13.
[21] Zhang P Z, Zheng D W, Ying G M, et al. Discussion on late Cenozoic growth and rise of Northeastern margin of the Tibetan Plateau[J]. Quaternary Sciences, 2006, 26(1):5-13.
[22] Zhang P Z, Min W, Deng Q D, et al. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault,northwestern China[J]. Science in China Series D:Earth Sciences, 2005, 48(3):364-375.
[23] 肖骏, 陈汉林, 林秀斌, 等. 海原—六盘山地区活动构造的活动时间厘定:来自光释光测年的限定[J]. 地球科学, 2011, 36(6):993-998.
[23] Xiao J, Chen H L, Lin X B, et al. Determination of the timing of active structures in Haiyuan-liupan Shan area:Constraints from OSL dating[J]. Earth Science, 2011, 36(6):993-998.
[24] Li Y C, Shan X J, Qu C Y, et al. Elastic block and strain modeling of GPS data around the Haiyuan-Liupanshan fault,northeastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2017,150:87-97.
[25] 张晓亮, 师昭梦, 蒋锋云, 等. 海原—六盘山弧型断裂及其附近最新构造变形演化分析[J]. 大地测量与地球动力学, 2011, 31(3):20-24.
[25] Zhang X L, Shi Z M, Jiang F Y, et al. Research on late tectonic deformation evolvement of Huaiyuan-Liupanshan arc fault and its surrounding area[J]. Journal of Geodesy and Geodynamics, 2011, 31(3):20-24.
[26] 李强, 江在森, 武艳强, 等. 海原—六盘山断裂带现今构造变形特征[J]. 大地测量与地球动力学, 2013, 33(2):18-22.
[26] Li Q, Jiang Z S, Wu Y Q, et al. Present-day tectonic deformation characteristics of Haiyuan-Liupanshan fault zone[J]. Journal of Geodesy and Geodynamics, 2013, 33(2):18-22.
[27] 刘兴旺, 袁道阳, 史志刚, 等. 六盘山断裂带构造活动特征及流域盆地地貌响应[J]. 地震工程学报, 2015, 37(1):168-174,195.
[27] Liu X W, Yuan D Y, Shi Z G, et al. Tectonic activity characteristics of the Liupanshan fault zone and geomorphologic response of drainage basin[J]. China Earthquake Engineering Journal, 2015, 37(1):168-174,195.
[28] 杜方, 闻学泽, 冯建刚, 等. 六盘山断裂带的地震构造特征与强震危险背景[J]. 地球物理学报, 2018, 61(2):545-559.
doi: 10.6038/cjg2018L0181
[28] Du F, Wen X Z, Feng J G, et al. Seismo-tectonics and seismic potential of the Liupanshan fault zone (LPSFZ),China[J]. Chinese Journal of Geophysics, 2018, 61(2):545-559.
[29] 皮娇龙, 滕吉文, 丁志峰, 等. 青藏高原东北缘六盘山构造带及邻域的动力学响应数值模拟[J]. 地球物理学进展, 2018, 33(1):64-73.
[29] Pi J L, Teng J W, Ding Z F, et al. Numerical simulation on the dynamic response of Liupanshan tectonic belt in the northeastern Tibetan Plateau and its adjacent regions[J]. Progress in Geophysics, 2018, 33(1):64-73.
[30] 庞亚瑾, 杨少华, 李海兵, 等. 青藏高原东北缘海原—六盘山断裂带现今地壳应力环境的数值分析[J]. 岩石学报, 2019, 35(6):1848-1856.
[30] Pang Y J, Yang S H, Li H B, et al. Numerical modeling of current crustal stress state in Haiyuan-Liupanshan fault system of NE Tibet[J]. Acta Petrologica Sinica, 2019, 35(6):1848-1856.
[31] 肖霖, 李朝鹏, 王伟涛, 等. 宁夏固原寺口子剖面色度记录的29 Ma以来气候演化[J]. 地质论评, 2019, 65(3):623-631.
[31] Xiao L, Li C P, Wang W T, et al. Climate evolution since 29 Ma recorded by sediment color on Sikouzi Section,Guyuan,Ningxia[J]. Geological Review, 2019, 65(3):623-631.
[32] Larsen H C, Saunders A D, Clift P D, et al. Seven million years of glaciation in Greenland[J]. Science,264:952-955.
[33] Qiu N S, Liu S. Uplift and denudation in the continental area of China linked to climatic effects:Evidence from apatite and zircon fission track data[J]. Scientific Reports, 2018, 8(1):9546.
[34] 杨东, 方小敏, 彭子成, 等. 陇西六盘山黄土及最近1.8 Ma B. P.以来的构造运动气候变化[J]. 地理科学, 2006, 26(2):192-198.
[34] Yang D, Fang X M, Peng Z C, et al. Liupanshan loess since last 1.8 ma B. P. on Longxi Basin of Western China and its response to tectonic movement and climate[J]. Scientia Geographica Sinica, 2006, 26(2):192-198.
[35] 董晓朋, 李振宏, 崔加伟, 等. 宁夏清水河中上游发现末次冰期最盛期冰缘遗迹群[J]. 地球科学与环境学报, 2022, 44(3):524-534.
[35] Dong X P, Li Z H, Cui J W, et al. Discovery of periglacial phenomena in the late stage of last glacial maximum at the upper to middle reaches of Qingshuihe River,Ningxia,China[J]. Journal of Earth Sciences and Environment, 2022, 44(3):524-534.
[36] Aitken M J. An introduction to optical dating[G]//An introduction to optical dating. Oxford: Oxford University Press,1998:87-107.
[37] Lu Y C, Wang X L, Wintle A G. A new OSL chronology for dust accumulation in the last 130,000 yr for the Chinese Loess Plateau[J]. Quaternary Research, 2007, 67(1):152-160.
[38] 王旭龙, 李晓妮, 卢演俦. 红光固体二极管点阵在释光测年中的光照应用[J]. 海洋地质与第四纪地质, 2004, 24(1):133-137.
[38] Wang X L, Li X N, Lu Y C. Red led and its application to luminescence lighting[J]. Marine Geology & Quaternary Geology, 2004, 24(1):133-137.
[39] 王旭龙, 卢演俦, 李晓妮. 细颗粒石英光释光测年:简单多片再生法[J]. 地震地质, 2005, 27(4):615-623.
[39] Wang X L, Lu Y C, Li X N. Luminescence dating of fine-grained quartz in Chinese loess-simplified multiple aliquot regenerative-dose (mar) protocol[J]. Seismology and Geology, 2005, 27(4):615-623.
[40] Rees-Jones J. Optical dating of young sediments using fine-grain quartz[J]. Ancient TL, 1995, 13(2):9-14.
[41] Tian J X, Li M T, Liang Z R, et al. Tectonic evolution of the Qingshuihe Basin since the Late Miocene:Relationship with north-eastward expansion of the Tibetan Plateau[J]. Geological Journal, 2020, 55(11):7148-7166.
[42] 马兆颖, 董晓朋, 张庆, 等. 六盘山晚更新世以来抬升过程沉积响应及环境效应[J]. 煤田地质与勘探, 2020, 48(5):152-164.
[42] Ma Z Y, Dong X P, Zhang Q, et al. Sedimentary response to the uplift of the Liupanshan since the late Pleistocene and its environmental effects[J]. Coal Geology & Exploration, 2020, 48(5):152-164.
[43] 冉勇康, 段瑞涛, 邓起东, 等. 海原断裂高湾子地点三维探槽的开挖与古地震研究[J]. 地震地质, 1997, 19(2):97-107.
[43] Ran Y K, Duan R T, Deng Q D, et al. 3 d trench excavation and paleoseismology at gaowanzi of the Haiyuan fault[J]. Seismology and Geology, 1997, 19(2):97-107.
[44] 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学:D辑, 2003(增刊):12-20.
[44] Zhang P Z, Deng Q D, Zhang G M, et al. Strong earthquake activity and active Chinese mainland[J]. Science in China:Series D, 2003(S):12-20.
[45] 方小敏, 戴雪荣, 李吉均, 等. 亚洲季风演化的突发性与不稳定性——以末次间冰期土壤发生为例[J]. 中国科学:D辑, 1996(2):154-160.
[1] 李皎皎, 张永军, 何怡原, 李逸川, 李诗珺, 陈瑶. 基于航磁与小震精定位结果研究断裂构造特征——以攀西地区为例[J]. 物探与化探, 2025, 49(1): 206-214.
[2] 刘祜, 魏文博, 程纪星, 漆富成. 音频大地电磁测深在江西修武盆地页岩气目标层研究中的应用[J]. 物探与化探, 2015, 39(5): 904-908.
[3] 赵希刚, 贺建国, 赵翠萍, 陈秋. 应用TEM资料分析麻黄泉地区地层结构及沉积环境[J]. 物探与化探, 2010, 34(4): 428-434.
[4] 薛建, 黄航, 张良怀. 探地雷达方法探测与评价长春市活动断层[J]. 物探与化探, 2009, 33(1): 63-66.
[5] 马文涛, 唐文榜, 徐锡伟, 郝书俭, 储宝贵. d:\PDF\.pdf北京黄庄—高丽营隐伏断裂立水桥段 浅部活动特征的地震探测[J]. 物探与化探, 2005, 29(6): 503-505,509.
[6] 陈蜀俊, 罗登贵, 甘家思, 黄江. 浅层地震勘探在工程场地地震安全性评价近场工作中的应用[J]. 物探与化探, 2004, 28(5): 463-466.
[7] 孙秀容, 戴纯俊, 刘志高, 许冬儿, 潘兆忠. 长江三角洲南翼晚更新世—全新世沉积物地球物理研究[J]. 物探与化探, 2002, 26(3): 175-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com