Stratigraphic architecture and activity of the alluvial fan in the eastern piedmont of the Liupan Mountains since the Late Pleistocene
YAO Zi-Heng1(), DONG Xiao-Peng2,3,4(), YANG Yong5
1. Geological Environment Exploration Institute of Jiangsu Province, Nanjing 211100, China 2. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China 3. Key Laboratory of Paleomagnetism and Tectonic Reconstruction, Ministry of Natural Resources, Beijing 100081, China 4. Key Laboratory of Active Tectonics and Geological Safety, Ministry of Natural Resources, Beijing 100081, China 5. Geological Survey Institute of Ningxia Hui Autonomous Region, Yinchuan 750021, China
中国中、西部城市或城镇居民区有很多位于山前冲积扇形成的冲积平原之上,揭露冲积扇的地质结构和稳定性对城市建设规划和土地合理利用具有重要意义。六盘山东麓冲积扇上分布有固原市城镇居民区和村落,人口密集。冲积扇发育多套事件沉积层,记录了构造活动和气候转变控制下冲积扇的活动性特征。本文通过野外地质调查、光释光测年、可控源音频大地电测深和常规氡气测量等手段,揭露了六盘山东麓冲积扇地层结构,厘定了晚更新世以来两期事件沉积层,沉积时代分别为~43.33 ka B.P.和22.92~20.72 ka B.P.。基于可控源音频大地电磁测量和常规氡气测量结果,揭示在海原断裂带和清水河断裂活动的影响下,六盘山东麓冲积扇至今仍存在较高活动性。该研究结果可以为六盘山地区地壳稳定性评价、地质灾害防治和工程设施建设提供基础数据支撑。
Many cities or urban residential areas in central and western China reside in alluvial plains formed from piedmont alluvial fans. Hence, revealing the stratigraphic architectures and stability of alluvial fans holds critical significance for urban construction planning and rational land use. The alluvial fan in the eastern piedmont of the Liupan Mountains hosts the urban residential areas and villages of Guyuan City, with a dense population. Moreover, the alluvial fan develops several event deposits recording the activity of the alluvial fan under tectonic movements and climatic changes. Through field geological survey, optically stimulated luminescence dating, controlled source audio-frequency magnetotellurics (CSAMT), and conventional radon measurement, this study revealed the stratigraphic architecture of the alluvial fan and its two-phase event deposits (~43.33 ka B.P. and 22.92~20.72 ka B.P) since the Late Pleistocene. As indicated by the CSAMT and conventional radon measurement results, the alluvial fan still exhibits high activity under the influence of the Haiyuan and Qingshuihe faults. The results of this study provide fundamental data for crustal stability assessment, prevention and control of geologic hazards, and engineering construction in the Liupanshan area.
姚子恒, 董晓朋, 杨勇. 六盘山东麓冲积扇晚更新世以来地层结构及其活动性特征[J]. 物探与化探, 2025, 49(1): 1-13.
YAO Zi-Heng, DONG Xiao-Peng, YANG Yong. Stratigraphic architecture and activity of the alluvial fan in the eastern piedmont of the Liupan Mountains since the Late Pleistocene. Geophysical and Geochemical Exploration, 2025, 49(1): 1-13.
Fig.7 六盘山东麓冲积扇晚更新世末以来活动性与断裂带构造活动、气候变化序列对比关系 (海原断裂带晚更新世末活动性据Zhang et al.[22]、冉永康等[43]、向宏发等[18]、张培震等[44]、肖骏等[23];古里雅冰芯气候记录据姚檀栋等[46];深海氧同位素气候记录据Martinson et al.[54])
Fang X M, Dai X R, Li J J, et al. The abrupt and unstable evolution of Asian Monsoon: A case study of the soil occurrence during the last interglacial[J]. Science in China:Series D, 1996(2):154-160.
[46]
姚檀栋, Thompson L G, 施雅风, 等. 古里雅冰芯中末次间冰期以来气候变化记录研究[J]. 中国科学:D辑, 1997, 27(5):447-452.
[46]
Yao T D, Thompson L G, Shi Y F, et al. Study of the climatic changing since interglacial recorded by the Gurya ice core[J]. Science in China:Series D, 1997, 27(5):447-452.
Lu H Y, An Z S, Wang X Y, et al. Geomorphological evidence of the staged uplift of the northeastern margin of Qinghai-Tibet Plateau in recent 14 Ma[J]. Science in China:Series D, 2004, 34(9):855-864.
Shi Y F, Li J J, Li B Y, et al. Uplift of the Qinghai-Xizang (Tibetan) plateau and East Asia environmental change during late Cenozoic[J]. Acta Geographica Sinica, 1999, 54(1):10-21.
Jin H L, Li M Q, Su Z Z, et al. Climatic change reflected by stratigraphical magnetic susceptibility in Salawusu river basin,North China since 220ka BP[J]. Journal of Desert Research, 2006, 26(5):680-686.
Cui J W, Li Z H, Liu F, et al. Redefinition of the sedimentary time of the salawusu formation in the Hongsibu Basin,Ningxia and its significance[J]. Journal of Geomechanics, 2018, 24(2):283-292.
Jin H L, Li M Q, Su Z Z, et al. Sedimentary age of strata in the salawusu river basin and climatic changing[J]. Acta Geologica Sinica, 2007, 81(3):307-315.
Liu B, Jin H L, Sun Z, et al. Geochemical characteristics of aeolian deposits in Gonghe Basin,northeastern Qinghai-Tibetan Plateau and the indicating climatic changes[J]. Advances in Earth Science, 2012, 27(7):788-799.
doi: 10.11867/j.issn.1001-8166.2012.07.0788
[54]
Martinson D G, Pisias N G, Hays J D, et al. Age dating and the orbital theory of the ice ages:Development of a high-resolution 0 to 300,000 year chronostratigraphy[J]. Quaternary Research,27:1-29.
[1]
李新坡. 中国北方地区冲积扇地貌发育特征与影响因素分析[D]. 北京: 北京大学, 2007.
[1]
Li X P. Geomorphological development characteristics and influencing factors of alluvial fans in Northern China[D]. Beijing: Peking University, 2007.
[2]
Malik J N, Sohoni P S, Merh S S, et al. Active tectonic control on alluvial fan architecture along Kachchh mainland Hill Range,Western India[J]. Zeitschrift Für Geomorphologie, 2001, 45(1):81-100.
[3]
Viseras C, Calvache M L, Soria J M, et al. Differential features of alluvial fans controlled by tectonic or eustatic accommodation space:Examples from the Betic Cordillera,Spain[J]. Geomorphology, 2003, 50(1-3):181-202.
[4]
White K, Drake N, Millington A, et al. Constraining the timing of alluvial fan response to late quaternary climatic changes,southern Tunisia[J]. Geomorphology, 1996, 17(4):295-304.
[5]
Harvey A M, Silva P G, Mather A E, et al. The impact of Quaternary sea-level and climatic change on coastal alluvial fans in the Cabo de Gata ranges,southeast Spain[J]. Geomorphology, 1999, 28(1-2):1-22.
[6]
Nott J F, Thomas M F, Price D M. Alluvial fans,landslides and late Quaternary climatic change in the wet tropics of northeast Queensland[J]. Australian Journal of Earth Sciences, 2001, 48(6):875-882.
Yan Z P, Zhao Y Z, Jiao H J, et al. The geological control of the Yellow River alluvial fan on central plain cities[J]. Earth Science Frontiers, 2010, 17(6):278-285.
Wang C S, Ye W M, Du H J. The urban geo-environmental effect of underground engineering in Shanghai City[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(2):283-286.
Liu L C, Chen H H, Yang Y, et al. The effects of sedimentary environment and human activity on shallow groundwater quality in Suxichang area[J]. Geology in China, 2009, 36(4):915-919.
Yan Z P. Control function of geologic structure to the stability of elevated section of the lower Yellow River[J]. Yellow River, 2009, 31(7):16-17,19.
[11]
Zhang P Z, Burchfiel B C, Molnar P, et al. Late Cenozoic tectonic evolution of the Ningxia-Hui autonomous region,China[J]. Geological Society of America Bulletin, 1990, 102(11):1484-1498.
Song Y G, Fang X M, Li J J, et al. Study on uplift process of Liupan Mountain in late Cenozoic[J]. Science in China:Series D, 2001(B12):142-148.
[13]
Zheng D W, Zhang P Z, Wan J L, et al. Rapid exhumation at -8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology:Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 2006, 248(1-2):198-208.
Teng J W, Ruan X M, Zhang Y Q, et al. The stratificational velocity structure of crust and covering strata of upper mantle and the orbit of deep interaquifer substance locus of movement for Tibetan Plateau[J]. Acta Petrologica Sinica, 2012, 28(12):4077-4100.
[15]
Wang W, Kirby E, Peizhen Z, et al. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau:Evidence for basin formation during Oligocene transtension[J]. Geological Society of America Bulletin, 2013, 125(3/4):377-400.
Wang C Y, Li Y H, Lou H. Issues on crustal and upper-mantle structures associated with geodynamics in the northeastern Tibetan Plateau[J]. Chinese Science Bulletin, 2016, 61(20):2239-2263.
Wang W T, Zhang P Z, Zheng D W, et al. Late Cenozoic tectonic deformation of the Haiyuan fault zone in the northeastern margin of the Tibetan Plateau[J]. Earth Science Frontiers, 2014, 21(4):266-274.
Xiang H F, Guo S M, Zhang B L, et al. Active features of the eastern Liupanshan piedmont reverse fault zone since late quaternary[J]. Seismology and Geology, 1998, 20(4):321-327.
Li C Y. Quantitative study on several main fault zones in the northeast of Qinghai-Tibet Plateau[D]. Beijing: Institute of Geology,China Earthquake Administration, 2005.
Zhao Q C. Formation age of river terraces in the upper reaches of Jinghe River at the eastern foot of Liupanshan Mountain and its significance of neotectonic movement[D]. Beijing: China University of Geosciences(Beijing), 2015.
Zhang P Z, Zheng D W, Ying G M, et al. Discussion on late Cenozoic growth and rise of Northeastern margin of the Tibetan Plateau[J]. Quaternary Sciences, 2006, 26(1):5-13.
[22]
Zhang P Z, Min W, Deng Q D, et al. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault,northwestern China[J]. Science in China Series D:Earth Sciences, 2005, 48(3):364-375.
Xiao J, Chen H L, Lin X B, et al. Determination of the timing of active structures in Haiyuan-liupan Shan area:Constraints from OSL dating[J]. Earth Science, 2011, 36(6):993-998.
[24]
Li Y C, Shan X J, Qu C Y, et al. Elastic block and strain modeling of GPS data around the Haiyuan-Liupanshan fault,northeastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2017,150:87-97.
Zhang X L, Shi Z M, Jiang F Y, et al. Research on late tectonic deformation evolvement of Huaiyuan-Liupanshan arc fault and its surrounding area[J]. Journal of Geodesy and Geodynamics, 2011, 31(3):20-24.
Li Q, Jiang Z S, Wu Y Q, et al. Present-day tectonic deformation characteristics of Haiyuan-Liupanshan fault zone[J]. Journal of Geodesy and Geodynamics, 2013, 33(2):18-22.
Liu X W, Yuan D Y, Shi Z G, et al. Tectonic activity characteristics of the Liupanshan fault zone and geomorphologic response of drainage basin[J]. China Earthquake Engineering Journal, 2015, 37(1):168-174,195.
Du F, Wen X Z, Feng J G, et al. Seismo-tectonics and seismic potential of the Liupanshan fault zone (LPSFZ),China[J]. Chinese Journal of Geophysics, 2018, 61(2):545-559.
Pi J L, Teng J W, Ding Z F, et al. Numerical simulation on the dynamic response of Liupanshan tectonic belt in the northeastern Tibetan Plateau and its adjacent regions[J]. Progress in Geophysics, 2018, 33(1):64-73.
Pang Y J, Yang S H, Li H B, et al. Numerical modeling of current crustal stress state in Haiyuan-Liupanshan fault system of NE Tibet[J]. Acta Petrologica Sinica, 2019, 35(6):1848-1856.
Xiao L, Li C P, Wang W T, et al. Climate evolution since 29 Ma recorded by sediment color on Sikouzi Section,Guyuan,Ningxia[J]. Geological Review, 2019, 65(3):623-631.
[32]
Larsen H C, Saunders A D, Clift P D, et al. Seven million years of glaciation in Greenland[J]. Science,264:952-955.
[33]
Qiu N S, Liu S. Uplift and denudation in the continental area of China linked to climatic effects:Evidence from apatite and zircon fission track data[J]. Scientific Reports, 2018, 8(1):9546.
[34]
杨东, 方小敏, 彭子成, 等. 陇西六盘山黄土及最近1.8 Ma B. P.以来的构造运动气候变化[J]. 地理科学, 2006, 26(2):192-198.
[34]
Yang D, Fang X M, Peng Z C, et al. Liupanshan loess since last 1.8 ma B. P. on Longxi Basin of Western China and its response to tectonic movement and climate[J]. Scientia Geographica Sinica, 2006, 26(2):192-198.
Dong X P, Li Z H, Cui J W, et al. Discovery of periglacial phenomena in the late stage of last glacial maximum at the upper to middle reaches of Qingshuihe River,Ningxia,China[J]. Journal of Earth Sciences and Environment, 2022, 44(3):524-534.
[36]
Aitken M J. An introduction to optical dating[G]//An introduction to optical dating. Oxford: Oxford University Press,1998:87-107.
[37]
Lu Y C, Wang X L, Wintle A G. A new OSL chronology for dust accumulation in the last 130,000 yr for the Chinese Loess Plateau[J]. Quaternary Research, 2007, 67(1):152-160.
Wang X L, Lu Y C, Li X N. Luminescence dating of fine-grained quartz in Chinese loess-simplified multiple aliquot regenerative-dose (mar) protocol[J]. Seismology and Geology, 2005, 27(4):615-623.
[40]
Rees-Jones J. Optical dating of young sediments using fine-grain quartz[J]. Ancient TL, 1995, 13(2):9-14.
[41]
Tian J X, Li M T, Liang Z R, et al. Tectonic evolution of the Qingshuihe Basin since the Late Miocene:Relationship with north-eastward expansion of the Tibetan Plateau[J]. Geological Journal, 2020, 55(11):7148-7166.
Ma Z Y, Dong X P, Zhang Q, et al. Sedimentary response to the uplift of the Liupanshan since the late Pleistocene and its environmental effects[J]. Coal Geology & Exploration, 2020, 48(5):152-164.
Ran Y K, Duan R T, Deng Q D, et al. 3 d trench excavation and paleoseismology at gaowanzi of the Haiyuan fault[J]. Seismology and Geology, 1997, 19(2):97-107.