1. School of Geophysics and Information Technology,China University of Geosciences,Beijing 100083,China 2. Zhejiang Earthquake Agency,Hangzhou 310013,China
Crust-mantle velocity structures,which provide an important basis for research on deep structures and dynamic mechanisms,are primarily determined using seismic tomography.A high-quality and fine-scale velocity reference model can provide an effective initial model and constraints for seismic tomography.However,existing methods for building a crust-mantle velocity reference model suffer some shortcomings,such as the lack of fine-scale building of the surface model and the partial distortion of the crust-mantle model caused by vertical global correction.To overcome these shortcomings,this study proposed an improved method for building a 3D crust-mantle velocity reference model.Firstly,the optimal Moho and sedimentary basement models were selected and constructed.Then,these boundary models were used to constrain and adjust the crust and upper mantle models vertically,including the linear correction and weighted fusion through partial compression and stretching.As a result,a crust-mantle medium model was established.Subsequently,the surface model was built in combination with prior geological data.Finally,these models were combined to construct a 3D crust-mantle velocity reference model.Using this method,this study built a 3D crust-mantle S-wave velocity reference model for the central South China Block by collecting previous crust-mantle structure models and geological data of the block.The comparative analysis shows that the model built in this study enjoys higher resolution and more accurate regional Moho,thus verifying the effectiveness of the method.This study provides a reliable 3D velocity reference model for the central South China Block.
陈中伟, 郭良辉, 陈元恪, 唐晗晗. 壳幔三维速度参考模型构建方法研究——以华南陆块中部为例[J]. 物探与化探, 2023, 47(4): 936-943.
CHEN Zhong-Wei, GUO Liang-Hui, CHEN Yuan-Ke, TANG Han-Han. A method for building a 3D crust-mantle velocity reference model: A case study of the central South China Block. Geophysical and Geochemical Exploration, 2023, 47(4): 936-943.
Fang H J, Liu Y, Yao H J, et al. Regional-scale joint seismic body- and surface-wave travel time tomography[J]. Reviews of Geophysics and Planetary Physics, 2023, 54(3):252-269.
[3]
李慧. 地震层析成像初始模型反演算法研究及应用[D]. 成都: 成都理工大学, 2020.
[3]
Li H. Research and application of initial model inversion algorithm of seismic tomography[D]. Chengdu: Chengdu University of Technology, 2020.
Zhang M H, Liu Y S, Hou J, et al. Review of seismic tomography methods in near-surface structures reconstruction[J]. Progress in Geophysics, 2019, 34(1):48-63.
[5]
赵盼盼, Michel C, 刘启元. 地震环境噪声成像中的地形影响校正[J]. 地球物理学报, 2020, 63(10):3764-3774.
[5]
Zhao P P, Michel C, Liu Q Y. Topographic correction in ambient noise tomography[J]. Chinese Journal of Geophysics, 2020, 63(10):3764-3774.
Fan W Y, Chen Y S, Tang Y C, et al. Crust and upper mantle velocity structure of the eastern Tibetan Platean and adjacent regions from ambient noise tomography[J]. Chinese Journal of Geophysics, 2015, 58(5):1568-1583.
Luo J, Li Z H, Wang H T. A preliminary study on seismic tomography in mid-eastern segment of Tianshan Mountain[J]. China Earthquake Engineering Journal, 2014, 36(1):107-113,169.
Deng X G, Wang F Y, Ma C J, et al. The crustal structure characteristics of different tectonic units in central Yunnan revealed by artificial seismic sounding[J]. Journal of Seismological Research, 2022, 45 (4):517-525.
Li J M, Sun X L, Wang S, et al. Crustal shear wave velocity structure near the Jiuyishan area from seismic ambient noise tomography:Implications for tectonic evolution in South China[J]. Chinese Journal of Geophysics, 2020, 63(1):184-195.
Sui Y, Wu Q J, Zhang R Q. P-wave and S-wave velocity structures of upper mantle beneath South China derived from seismic triplications[J]. Chinese Journal of Geophysics, 2018, 61(8):3237-3250.
Chen F. Lithospheric shear wave tomography of continental Chinaby joint inversion of surface-wave and satellite gravity data[D]. Hefei: University of Science and Technology of China, 2017.
Jin Z. Study on three-dimensional crustal structure in the central and southern Fujian Strait and Taiwan Strait[D]. Haerbin: lnstitute of Engineering Mechanics,CEA, 2018.
Cai H T, Jin X, Wang S X, et al. The crust structure and velocity structure characteristics beneath Ninghua-Datian-Hui'an[J]. Chinese Journal of Geophysics, 2016, 59(1):157-168.
Deng Y F, Li S L, Fan W M, et al. Crustal structure beneath South China revealed by deep seismic soundings and its dynamics implications[J]. Chinese Journal of Geophysics, 2011, 54(10):2560-2574.
Feng C, Jiao M R, Yu H Y, et al. Inversion of S-wave velocity structure in Liaoning and adjacent areas[J]. Journal of Geodesy and Geodynamics, 2022, 42(8):829-834.
Deng X G, Wang F Y, Liu B F, et al. Upper crustal velocity structure of the Yibin Jinchuan profile and its implications[J]. Journal of Geodesy and Geodynamics, 2018, 38(12):1256-1261.
Li F, Yu G P, Liang S S, et al. Focal depth determination of Ludian Ms 6.5 earthquake with a segmentally iterative ray tracing method in 3D geological models[J]. Earthquake Research in China, 2020, 36(2):333-340.
Luo F, Yan J Y, Fu G M, et al. Crust 1.0 crustal model and its application:an example from Middle-Lower Yangtze Metallogenic Belt[J]. Acta Geologica Sinica, 2020, 94(2):648-660.
Luo F, Yan J Y, Fu G M, et al. Crust thickness and its apocalyptic of mineralization in South China:Constraint from satellite gravity data[J]. Geology in China, 2019, 46(4):759-774.
Qu P, Chen Y S, Yu Y, et al. 3D velocity structure of upper mantle beneath South China and its tectonic implications:Evidence from finite frequency seismic tomography[J]. Chinese Journal of Geophysics, 2020, 63(8):2954-2969.
Li X L, Hao T Y, Li Z W. P wave velocity structure and tectonic analysis beneath southeastern China[J]. Chinese Journal of Geophysics, 2020, 63(5):1802-1815.
Wang M L, Chen Y, Liang X F, et al. Surface wave tomography for South China and the northern South China Sea area[J]. Chinese Journal of Geophysics, 2015, 58(6):1963-1975.
He L P. Velocity Structures at typical areas in South China and their tectonic implications[D]. Guangzhou: University of Chinese Academy of Sciences(Guangzhou Institute of Geochemistry,Chinese Academy of Sciences), 2019.
[24]
谭皓原. 华南地区地壳及上地幔三维体波速度结构研究[D]. 成都: 成都理工大学, 2014.
[24]
Tan H Y. Body wave study of crustal and upper mantle velocity structure in South China[D]. Chengdu: Chengdu University of Technology, 2014.
Luo S, Yao H J, Li Q S, et al. High-resolution 3D crustal S-wave velocity structure of the Middle-Lower Yangtze River Metallogenic Belt and implications for its deep geodynamic setting[J]. Science China Earth Sciences, 2019, 49(9):1361-1378.
[26]
Tesauro M, Kaban M K, Cloetinfh A P L. EuCRUST-07:A new reference model for the European crust[J]. Geophysical Research Letters, 2008, 35(5):1-5.
[27]
Grad M, Tiira T, ESC Working Group. The Moho depth map of the European Plate[J]. Geophysical Journal International, 2009, 176(1):279-292.
doi: 10.1111/gji.2008.176.issue-1
[28]
Molinari I, Morelli A. EPcrust:A reference crustal model for the European Plate[J]. Geophysical Journal International, 2011, 185(1):352-364.
doi: 10.1111/gji.2011.185.issue-1
[29]
Artemieva I M, Thybo H. EUNAseis:A seismic model for Moho and crustal structure in Europe,Greenland,and the North Atlantic region[J]. Tectonophysics, 2013, 609:97-153.
doi: 10.1016/j.tecto.2013.08.004
[30]
Magrin A, Rossi G. Deriving a new crustal model of Northern Adria:The Northern Adria Crust (NAC) model[J]. Frontiers in Earth Science, 2020, 8:89.
doi: 10.3389/feart.2020.00089
[31]
Arroucau P, Custodio S, Civiero C, et al. PRISM3D:A 3D reference seismic model for Iberia and adjacent areas[J]. Geophysical Journal International, 2021, 225(2):789-810.
doi: 10.1093/gji/ggab005
Zheng T Y, Duan Y H, Xu W W, et al. Structural model of crust-upper mantle seismic wave velocity in North China v2.0[DB /OL], http://www.craton.cn/data.
[33]
Brocher T M. Empirical relations between elastic wavespeeds and density in the Earth's crust[J]. Bulletin of the seismological Society of America, 2005, 95(6):2081-2092.
doi: 10.1785/0120050077
[34]
Zhao G, Cawood P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222-223(2012):13-54.
doi: 10.1016/j.precamres.2012.09.017
Song C Z, Li J H, Yan J Y, et al. A tentative discussion on some tectonic problems in the east of South China continent[J]. Geology in China, 2019, 46(4):704-722.
Yan J Y, Lyu Q T, Zhang Y Q, et al. The deep boundaries of Jiangnan orogenic belt and its constraints on metallogenic:From the understanding of integrated geophysics[J]. Acta Petrologica Sinica, 2022, 38(2):544 -558.
doi: 10.18654/1000-0569/2022.02.16
[37]
Guo L, Gao R, Shi L. Crustal thickness and Poisson's ratios of South China revealed from joint inversion of receiver function and gravity data[J]. Earth and Planetary Science Letters, 2019, 510(2019):142-152.
doi: 10.1016/j.epsl.2018.12.039
[38]
Shen W S, Michael H R, Kang D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophysical Journal International, 2016, 206(2):954-979.
doi: 10.1093/gji/ggw175
Xing K. S-wave velocity structure of the South China from ambient noise tomography[D]. Beijing: China University of Geosciences(Beijing), 2015.
[40]
Zhou L, Xie J, Shen W, et al. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography[J]. Geophysical Journal International, 2012, 189(3):1565-1583.
doi: 10.1111/gji.2012.189.issue-3
[41]
Lin F C, Ritzwoller M H, Snieder R. Eikonal tomography:Surface wave tomography by phase front tracking across a regional broad-band seismic array[J]. Geophysical Journal International, 2009, 177(3):1091-1110.
doi: 10.1111/gji.2009.177.issue-3
[42]
Li Y, Gao M, Wu Q. Crustal thickness map of the Chinese mainland from teleseismic receiver functions[J]. Tectonophysics, 2013, 611:51-60.
doi: 10.1016/j.tecto.2013.11.019
[43]
He C, Dong S, Santosh M, et al. Seismic evidence for a Geosuture between the Yangtze and Cathaysia Blocks,South China[J]. Scientific Reports, 2013, 3(1):1-7.
[44]
Teng J, Zhang Z, Zhang X, et al. Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles[J]. Tectonophysics, 2013, 609:202-216.
doi: 10.1016/j.tecto.2012.11.024
Xiong X S. Moho depth and variation of the continent in China and its geodynamic implications[D]. Beijing: Chinese Academy of Geological Sciences, 2010.
Xiong X S, Gao R, Li Q S, et al. The Moho depth of South China revealed by seismic probing[J]. Acta Geo scientica Sinica, 2009, 30(6):774-786.
[47]
Han S C, Zhang H J, Xin H L, et al. USTClitho2.0:Updated unified seismic tomography models for Continental China Lithosphere from joint inversion of body-wave arrival times and surface-wave dispersion data[J]. Seismological Research Letters, 2021, 93 (1):201-215.
doi: 10.1785/0220210122
Xin H L. Three-dimensional seismic travel time tomography of lithosphere of Continental China and earthquake relocations[D]. Hefei: University of Science and Technology of China, 2020.
[49]
Xin H, Zhang H, Kang M, et al. High-resolution lithospheric velocity structure of continental China by double-difference seismic travel-time tomography[J]. Seismological Research Letters, 2019, 90(1):229-241.
doi: 10.1785/0220180209
Yang W C. Crustal density imaging of Yangtze Craton and formation of the Yanshanian Granitites in South China[J]. Geological Review, 2018, 64(5):1045-1054.
Huang J M. The study of gravity and magnetic data processing and interpretation method on boundary delineation and shape inversion of rock body in South China[D]. Beijing: China University of Geosciences(Beijing), 2013.
Ma W. Geological and geochemical characteristics of hydrothermal alteration in the Dawan deposit in the Jiangnan Orogenic Belt and implications for gold mineralization[D]. Nanchang: East China University of Technology, 2022.
Liang X T, Quan H L, Ma X L, et al. Geophysical deep ore-prospecting model for Tongshankou area of Daye,Hubei Province[J]. Geophysical and Geochemical Exploration, 2012, 36(4):697-704.
Fu P L, Chen K, Yang F Q, et al. Boundary division of Yangtze ancient land and Cathaysia land block in the Guangxi section based on geophysical gravity and magnetic feature[J]. Mineral Resources and Geology, 2021, 35(3):503-510,516.