Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1225-1231    DOI: 10.11720/wtyht.2022.1567
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
一种适用于地磁梯度匹配导航的ISCCP算法
金子翔1(), 许苏鹏1, 张贵宾1(), 梁建1, 董根旺2, 范振宇1
1.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
2.中国冶金地质总局 地球物理勘查院,河北 保定 071051
An ISCCP algorithm for geomagnetic gradient matching for navigation
JIN Zi-Xiang1(), XU Su-Peng1, ZHANG Gui-Bin1(), LIANG Jian1, Dong Gen-Wang2, FAN Zhen-Yu1
1. School of Geophysics and Information Technology, China University of Geosciences(Beijing), Beijing 100083, China
2. Geophysical Exploration Academy of China Metallurgical Geology Bureau, Baoding 071051, China
全文: PDF(3873 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对迭代最近等值线点(ICCP)算法在地磁变化平缓的区域匹配误差大,甚至出现误匹配的问题,本文首先建立ICCP算法的误差模型,阐明ICCP算法在这些区域匹配误差大的原因,并基于该误差模型,提出适用于地磁梯度匹配导航的迭代搜索最近等值线点(ISCCP)算法,该算法在ICCP的基础上改进了最近点搜索方式,利用地磁3个正交方向梯度信息进行迭代搜索。最后通过仿真实验表明,ISCCP算法平均点位误差能控制在半个网格长度以内,精度相较于ICCP算法提高了约15倍,有效解决了ICCP算法在地磁变化平缓的区域匹配误差大的问题。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金子翔
许苏鹏
张贵宾
梁建
董根旺
范振宇
关键词 地磁梯度匹配导航ICCP算法误差模型迭代搜索    
Abstract

The iterated closest contour point (ICCP) algorithm results in large matching errors and even false matching in areas with small geomagnetic variations. Given this, this study established an error model for the ICCP algorithm in order to determine the causes of the large matching errors in the areas. Based on this model, this study proposed an iterated search closest contour point (ISCCP) algorithm suitable for geomagnetic gradient matching for navigation. In the proposed algorithm, the closest point search method was improved based on the ICCP, and an iterative search was performed using the geomagnetic gradient information of three orthogonal directions. The simulation results show that the average point error of the ISCCP algorithm can be controlled within half a grid length, with a precision about 15 times higher than that of the ICCP algorithm. Therefore, the ISCCP algorithm proposed in this study can effectively eliminate the large matching errors in areas with small geomagnetic variations caused by the ICCP algorithm.

Key wordsgeomagnetic gradient matching navigation    ICCP algorithm    error model    iterative search
收稿日期: 2021-10-19      修回日期: 2022-01-24      出版日期: 2022-10-20
ZTFLH:  P631  
基金资助:中国电波传播研究所稳定支持科研项目(A132007W06);中国地质调查局项目“全国陆域及海区地质图件更新与共享”(DD20190370)
通讯作者: 张贵宾
作者简介: 金子翔(1995-),男,硕士研究生,主要从事地球物理/惯性组合导航算法研究工作。Email:jin_zixiang@163.com
引用本文:   
金子翔, 许苏鹏, 张贵宾, 梁建, 董根旺, 范振宇. 一种适用于地磁梯度匹配导航的ISCCP算法[J]. 物探与化探, 2022, 46(5): 1225-1231.
JIN Zi-Xiang, XU Su-Peng, ZHANG Gui-Bin, LIANG Jian, Dong Gen-Wang, FAN Zhen-Yu. An ISCCP algorithm for geomagnetic gradient matching for navigation. Geophysical and Geochemical Exploration, 2022, 46(5): 1225-1231.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1567      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1225
Fig.1  ICCP匹配流程
Fig.2  ICCP误差分析
Fig.3  ISCCP匹配流程
Fig.4  ISCCP误差分析
Fig.5  地磁总场与地磁梯度
参数描述 参数值
惯导系统误差 陀螺常值偏零 0.5 °/h
角度随机游走 0.01 °/ h
加速度常值偏值 150 μg
速度随机游走 10 μg/ H z
匹配过程 航行速度 10 m·s-1
采样点数 72
每次匹配点数 3
采样点间隔时间 8 s
初始惯导误差 100 m
Table 1  仿真参数
Fig.6  直线航迹匹配结果
Fig.7  直线航迹匹配误差
Fig.8  曲线航迹匹配情况
Fig.9  曲线航迹匹配误差
Fig.10  局部匹配结果
[1] 陈国雄, 刘天佑, 冯杰. 考虑日变影响的小尺度地磁无源导航方法[J]. 物探与化探, 2010, 34(5):590-594.
[1] Chen G X, Liu T Y, Feng J. Fine-scale passive magnetic navigation in consideration of the influence of geomagnetic diurnal change[J]. Geophysical and Geochemical Exploration, 34(5):590-594.
[2] 周能兵, 王亚斌, 王强. 地磁导航技术研究进展综述[J]. 导航定位学报, 2018, 6(2): 15-19.
[2] Zhou N B, Wang Y B, Wang Q. A brief review of geomagnetic navigation technology[J]. Journal of Navigation and Positioning, 2018, 6(2):15-19.
[3] 踪华, 刘嬿, 杨业. 地磁导航技术研究现状综述[J]. 航天控制, 2018, 36(3):93-98.
[3] Zong H, Liu Y, Yang Y. Overview of the research status about geomagnetic navigation technology[J]. Aerospace Control, 2018, 36(3):93-98.
[4] 王立辉, 刘庆雅. 飞行器编队PSO多维地磁匹配算法[J]. 电光与控制, 2021, 28(3): 41-45.
[4] Wang L H, Liu Q Y. Multi-dimensional PSO gomagnetic matching algorithm for aircraft formation[J]. Electronics Optics & Control, 2021, 28(3):41-45.
[5] 吴凤贺, 张琦, 潘孟春, 等. 基于ICCP的地磁矢量匹配算法研究[J]. 中国测试, 2018, 44(2):103-107.
[5] Wu F H, Zhang Q, Pan M C, et al. Research on geomagnetic vector matching algorithm based on ICCP[J]. China Test, 2018, 44(2):103-107.
[6] Sun Y, Zhang J S, Qiao Y K, et al. Matching area intelligent selection method in geomagnetic navigation[C]// 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems, 2010.
[7] Xu Y, Guan G F, Song Q W, et al. Heuristic and random search algorithm in optimization of route planning for robot’s geomagnetic navigation[J]. Computer Communications, 2020, 154:12-17.
doi: 10.1016/j.comcom.2020.02.043
[8] 西永在, 路宁, 张兰, 等. 基于无人直升机平台的航磁系统集成与应用[J]. 物探与化探, 2019, 43(1):125-131.
[8] Xi Y Z, Lu N, Zhang L, et al. Integration and application of an aeromagnetic survey system based on unmanned helicopter platform[J]. Geophysical and Geochemical Exploration, 2019, 43(1):125-131.
[9] 梁建, 庄道泽, 郭玉峰, 等. 利用航磁重复线测量内符合精度消除航磁梯度测量中的转向差[J]. 物探与化探, 2018, 42(3):576-582.
[9] Liang J, Zhuang D Z, Guo Y F, et al. Elimination of steering difference in aeromagnetic gradient measurement using internal accord accuracy for test repeat line in aeromagnetic survey[J]. Geophysical and Geochemical Exploration, 2018, 42(3): 576-582.
[10] Song Z G, Zhang J S, Zhu W Q, et al. The vector matching method in geomagnetic aiding navigation[J]. Sensors, 2016, 16(7):1120.
doi: 10.3390/s16071120
[11] Chen Z, Zhang Q, Pan M C, et al. A new geomagnetic matching navigation method based on multidimensional vector elements of Earth’s magnetic field[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8):1289-1293.
doi: 10.1109/LGRS.2018.2836465
[12] 王琼, 王晓宇, 苏文博. 基于遗传算法的地磁平缓区域导航算法[J]. 现代导航, 2020, 11(5):313-317,328.
[12] Wang Q, Wang X Y, Su W B. Geomagnetic matching method based on genetic algorithm in areas with smooth magnetic features[J]. Modern Navigation, 2020, 11(5):313-317,328.
[13] 李鑫, 程德福, 周志坚. 一种基于地磁总场梯度的匹配定位算法[J]. 传感技术学报, 2017, 30(12):1869-1875.
[13] Li X, Chen D F, Zhou Z J. A matching algorithm based on the gradient of the total geomagnetic[J]. Journal of Transduction Technology, 2017, 30(12):1869-1875.
[14] 余志超. 基于多特征量的地磁匹配算法及应用[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[14] Yu Z C. Geomagnetic matching algorithm and application based on multi feature quantity[D]. Harbin:Harbin University of Technology, 2019.
[15] 赵建虎, 张红梅, 王爱学, 等. 利用ICCP的水下地磁匹配导航算法[J]. 武汉大学学报:信息科学版, 2010, 35(3):261-264.
[15] Zhao J H, Zhang H M, Wang A X, et al. Underwater geomagnetic navigation based on ICCP[J]. Journal of Wuhan University: Information Science Edition, 2010, 35(3):261-264.
[16] 张晓峻. 水下机器人地磁辅助导航算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[16] Zhang X J. Research on algorithms of geomagnetic aided navigation for remote operated vehicle[D]. Harbin:Harbin Engineering University, 2016.
[17] 王向磊, 苏牡丹, 刘培根, 等. 利用改进的ICCP算法辅助导航[J]. 测绘科学, 2013, 38(1):36-39,50.
[17] Wang X L, Su M D, Liu P G, et al. Application of improved ICCP algorithm in gravity matching aided navigation[J]. Science of Surveying and Mapping, 2013, 38(1):36-39,50.
[18] 严恭敏, 翁浚. 捷联导航算法与组合导航原理[M]. 西安: 西北工业大学, 2019.
[18] Yan G M, Weng J. Strapdown navigation algorithm and integrated navigation principle[M]. Xi'an: Northwestern Polytechnical University, 2019.
[1] 张虹, 屈进红, 姜作喜, 王萌, 李行素. 高精度航空重力测量系统分项指标设计分析[J]. 物探与化探, 2019, 43(2): 408-414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com