Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (4): 877-886    DOI: 10.11720/wtyht.2022.1307
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
井中地震粘声逆时偏移成像影响因素分析
杨宏伟1, 王霁川2, 孔庆丰1, 谷丙洛2, 孙卫国1, 李振春2
1.中国石油化工股份有限公司 胜利油田分公司物探研究院,山东 东营 257022
2.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
An analysis of influencing factors of visco-acoustic reverse time migration imaging in borehole seismic
YANG Hong-Wei1, WANG Ji-Chuan2, KONG Qing-Feng1, GU Bing-Luo2, SUN Wei-Guo1, LI Zhen-Chun2
1. Geophysical Research Institute of Shengli Oilfield Branch,China Petroleum & Chemical Corporation,Dongying 257022,China
2. School of Geosciences,China University of Petroleum(East China),Qingdao 266580,China
全文: PDF(5714 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

当前油气勘探目标已由简单构造油气藏转向深层复杂构造油气藏,其具有的储层薄、分布广、赋存状态隐蔽等特点对地震偏移成像技术提出了巨大挑战。与地面地震相比,井中地震震源位于井中,靠近目的层,且波场少一次经过低降速带,因此理论上具有资料信噪比高、储层识别力强等优点,能够实现井周储层精细成像的目的。然而,井中地震特殊的观测方式使得成熟的地面地震成像技术难以直接应用。此外,井中地震震源能量弱,地层的吸收衰减效应的影响强于地面地震。因此,需要发展针对性的井中地震偏移成像方法。鉴于上述因素,本文将粘声逆时偏移成像方法应用至井中地震,通过模型试算探讨多种因素对井中地震偏移成像效果的影响,为井中地震技术在实际中的应用提供理论支持和技术指导。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨宏伟
王霁川
孔庆丰
谷丙洛
孙卫国
李振春
关键词 井中地震分数阶粘声波动方程吸收补偿粘声逆时偏移    
Abstract

At present,the targets of oil and gas exploration have transformed from simple structural oil and gas reservoirs into deep complex structural oil and gas reservoirs.The small thickness,wide distribution,and hidden occurrence state of the reservoirs pose great challenges to seismic migration imaging technology.Compared with ground seismic,the seismic sources of the borehole seismic are located in wells and close to target layers.Meanwhile,the times that wave field induced by the borehole seismic passes through the low-velocity zone reduce by one.Therefore,the borehole seismic has the advantages of high signal-to-noise ratio (SNR) of data and strong reservoir identification in theory and thus can serve the purpose of the fine imaging of the reservoirs around wells.However,the special observation method makes it difficult to directly apply mature ground seismic imaging technology to the borehole seismic.In addition,due to the weak source energy of the borehole seismic,the formation absorption attenuation effect produces stronger impacts on the borehole seismic than on the ground seismic.Therefore,it is necessary to develop a targeted migration imaging method for borehole seismic.This study applied the visco-acoustic reverse-time migration imaging method to the borehole seismic and discussed the influence of various factors on the migration imaging effect of borehole seismic through model calculation,aiming to provide theoretical and technical support for the practical application of borehole seismic technology.

Key wordsborehole seismic    fractional visco-acoustic wave equation    absorption compensation    visco-acoustic reverse time migration
收稿日期: 2021-08-13      修回日期: 2022-03-24      出版日期: 2022-08-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目(42004093)
通讯作者: 王霁川
作者简介: 杨宏伟(1967-),男,博士,高级工程师,现主要从事综合解释及油藏建模研究工作。
引用本文:   
杨宏伟, 王霁川, 孔庆丰, 谷丙洛, 孙卫国, 李振春. 井中地震粘声逆时偏移成像影响因素分析[J]. 物探与化探, 2022, 46(4): 877-886.
YANG Hong-Wei, WANG Ji-Chuan, KONG Qing-Feng, GU Bing-Luo, SUN Wei-Guo, LI Zhen-Chun. An analysis of influencing factors of visco-acoustic reverse time migration imaging in borehole seismic. Geophysical and Geochemical Exploration, 2022, 46(4): 877-886.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1307      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I4/877
Fig.1  二维井中地震观测系统示意
Fig.2  井中三维观测系统示意
Fig.3  井中地震波场延拓及逆时偏移原理示意
Fig.4  粘声逆时偏移中的波场延拓示意
Fig.5  粘声逆时偏移中的震源波场和检波点波场
Fig.6  BP气云模型
Fig.7  BP模型不同炮间距下的粘声逆时偏移剖面
Fig.8  BP模型不同炮数下粘声逆时偏移剖面
Fig.9  BP模型井位于目标层不同位置的粘声逆时偏移剖面
Fig.10  井中地震射线路径及覆盖范围示意
Fig.11  BP模型井地粘声逆时偏移剖面对比
Fig.12  BP模型井地粘声逆时偏移剖面局部放大对比
[1] 何登发, 李德生, 童晓光, 等. 中国沉积盆地油气立体综合勘探论[J]. 石油与天然气地质, 2021, 42(2):265-284.
[1] He D F, Li D S, Tong X G, et al. Integrated 3D hydrocarbon exploration in sedimentary basins of China[J]. Oil & Gas Geology, 2021, 42(2):265-284.
[2] Weatherby B B. Method of making sub-surface determinations[P]. US, US2062151,
[3] Deily F H, Dareing D W, Paff G H, et al. Downhole measurements of drill string forces and motions[J]. Journal of Engineering for Industry, 1968, 90(2):217-225.
doi: 10.1115/1.3604617
[4] Squire W D, Alsup J M. Linear signal processing and ultrasonic transversal filters[J]. IEEE Transactions on Microwave Theory & Techniques, 1969, 17(11):1020-1040.
doi: 10.1109/TMTT.1969.1127091
[5] Haldorsen J, Miller D E, Walsh J J. Walk-away VSP using drill noise as a source[J]. Geophysics, 1995, 60(4):978.
doi: 10.1190/1.1443863
[6] 方家福. RVSP简介[J]. 地震学刊, 1994(2):61-84.
[6] Fang J F. A Brief introduction to RVSP[J]. Journal of Disaster Prevention and Mitigation Engineering, 1994(2):61-84.
[7] 杨微. 随钻地震信号检测方法研究[D]. 北京: 中国地震局地球物理研究所, 2007.
[7] Yang W. Single detection of the drill bit seismic wave whlie drilling[D]. Beijing: Institute of Geophysics,China Earthquake Administration, 2007.
[8] 吕海川, 朱伟伦, 贾衡天, 等. 随钻VSP测量中地震波场的数值模拟[J]. 石油机械, 2017, 45(2):10-12,44.
[8] Lyu H C, Zhu W L, Jia H T, et al. Numerical simulation of seismic wave field in VSP-WD[J]. China Petroleum Machinery, 2017, 45(2):10-12,44.
[9] Liang Z H. Wavefield processing of reverse VSP data[J]. Seg Technical Program Expanded Abstracts, 1991, 10(1):1646.
[10] 胡建平. 变偏移距VSP射线追踪模型[J]. 西安工程学院学报, 1998(S1):10-13.
[10] Hu J P. Walkaway VSP ray tracing model[J]. Journal of Earth Sciences and Environment, 1998(S1):10-13.
[11] 朱龙生. 多方位角逆VSP层析成像[D]. 西安: 长安大学, 2003.
[11] Zhu L S. Multi-azimuth Inverse VSP tomography[D]. Xi'an: Chang'an University, 2003.
[12] 胡明顺. 煤层气RVSP地震勘探成像方法研究[D]. 徐州: 中国矿业大学, 2013.
[12] Hu M S. Study on RVSP seismic imaging for coalbed methane exploration[D]. Xuzhou: China University of Mining and Technology, 2013.
[13] 金红娣, 潘冬明, 杨光. RVSP等效地面处理方法研究[J]. 地球物理学进展, 2015, 30(2):641-649.
[13] Jin H D, Pan D M, Yang G. Study on equivalent surface data processing method in RVSP[J]. Progress in Geophysics, 2015, 30(2):641-649.
[14] 张辉. 碳酸岩裸露区煤田RVSP勘探技术研究与应用[D]. 徐州: 中国矿业大学, 2018.
[14] Zhang H. Research and application of RVSP exploration technology in Carbonate exposed coalfield[D]. Xuzhou: China University of Mining and Technology, 2018.
[15] Hu M S, Pan D M, Zhou F B, et al. Multi-hole joint acquisition of a 3D-RVSP in a karst area:Case study in the Wulunshan Coal Field,China[J]. Appl. Geophys., 2020, 17(1): 37-53.
doi: 10.1007/s11770-020-0808-8
[16] 陶鹏飞, 尹奇峰, 赵红飞, 等. 井中地震波CT浅层城市地下空间成像[J]. 地下空间与工程学报, 2019, 15(S2):687-693.
[16] Tao P F, Yin Q F, Zhao H F, et al. Shallow surface urban underground space imaging using borehole seismic wave CT[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S2):687-693.
[17] 赵邦六, 董世泰, 曾忠. 井中地震技术的昨天、今天和明天——井中地震技术发展及应用展望[J]. 石油地球物理勘探, 2017, 52(5):1112-1123.
[17] Zhao B L, Dong S T, Zeng Z. Borehole seismic development,status quo and future:Application prospect of borehole seismic[J]. OGP, 2017, 52(5):1112-1123.
[18] 牛欢, 潘冬明, 周国婷. 井中地震VSP观测系统正演模拟[J]. 物探与化探, 2013, 37(2):280-286.
[18] Niu H, Pan D M, Zhou G T. Forward modeling of borehole seismic VSP observation system[J]. Geophysical and Geochemical Exploration, 2013, 37(2):280-286.
[19] 陈可洋. 几种地震观测方式的逆时成像分析[J]. 岩性油气藏, 2013, 25(1):95-101.
[19] Chen K Y. Reverse-time migration analysis of several seismic observation models[J]. Lithologic Reservoirs, 2013, 25(1):95-101.
[20] Kjartansson E. Constant Q-wave propagation and attenuation[J]. Journal of Geophysical Research:Solid Earth, 1979, 84(B9):4737-4748.
[21] Zhu T, Harris J M. Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians[J]. Geophysics, 2014, 79(3):S165-S174.
[22] Claerbout, Jon F. Toward a unified theory of reflector mapping[J]. Geophysics, 1971, 36(3):467.
doi: 10.1190/1.1440185
[23] Billette F J, Brandsberg-Dahl S. The 2004 BP velocity benchmark[C]// 67th EAGE Conference & Exhibition, 2005.
[1] 陈超群, 戴海涛, 高秦, 陈俊杰, 雒文丽, 王智茹. 复杂地表条件下地震资料一致性处理方法研究与应用[J]. 物探与化探, 2023, 47(4): 954-964.
[2] 王霁川, 谷丙洛, 李振春. 井中地震黏声逆时偏移的井型影响分析[J]. 物探与化探, 2022, 46(5): 1196-1206.
[3] 郭见乐. 基于粘滞性声波方程的吸收补偿方法[J]. 物探与化探, 2014, (3): 577-581.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com