Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (3): 544-549    DOI: 10.11720/wtyht.2022.1478
  《全域地球物理探测与智能感知》专栏 本期目录 | 过刊浏览 | 高级检索 |
MicrOBEM:小型海底电磁接收机
罗贤虎1(), 邓明2, 邱宁3,4, 孙珍3,4, 王猛2, 景建恩2, 陈凯2()
1.广州海洋地质调查局 海洋技术方法研究所,广东 广州 510760
2.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
3.南海海洋研究所 中国科学院边缘海与大洋重点实验室,广东 广州 511458
4.南海海洋研究所 南方海洋科学与工程广东省实验室(广州),广东 广州 511458
MicrOBEM: a micro-ocean-bottom electromagnetic receiver
LUO Xian-Hu1(), DENG Ming2, QIU Ning3,4, SUN Zhen3,4, WANG Meng2, JING Jian-En2, CHEN Kai2()
1. Institute of Marine Technology Methods, Guangzhou Marine Geological Survey, Guangzhou 510076, China
2. School of Geophysics and Information Technology, China University of Geosciences(Beijing), Beijing 100083, China
3. Key Laboratory of Marginal Sea Geology of CAS, South China Sea Institute of Oceanology, Guangzhou 511458,China
4. Southern Ocean Science and Engineering Guangdong Laboratory (Guangzhou), Nanhai Ocean Institute,Guangzhou 511458,China
全文: PDF(2209 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

海底电磁接收机主要用于海底大地电磁与可控源电磁信号高精度观测。针对现有海底电磁接收机(OBEM-Ⅲ型)体积大、功耗大、成本高等不足,开展了小型化、低功耗、低成本方面的技术研究。MicrOBEM小型海底电磁接收机开发了新的低功耗控制单元、低功耗前置放大器,配置了低功耗磁通门传感器,采取先进的电源管理技术,使得整机功耗由现有海底电磁接收机(OBEM-Ⅲ型)的1 600 mW下降至500 mW(搭载感应式磁传感器配置)以内。针对传统的声学释放器昂贵、笨重(需要匹配更多的浮力材料)等问题,通过集成水声通讯模块,并增加外置的电腐蚀释放装置方式实现释放回收,MicrOBEM仅需一个直径为17 in(1 in=2.54 cm)的玻璃浮球作为浮体,大幅降低仪器的体积和硬件成本,提升了设备的集成度和作业效率。MicrOBEM的体积(不含测量臂等)相比OBEM-Ⅲ减少3/4,功耗减少2/3,成本降低1/2,并于2021年3月在南海南部开展了深水大地电磁试验,其大地电磁测量功能得到初步验证,具有小体积、低功耗、低成本的优势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗贤虎
邓明
邱宁
孙珍
王猛
景建恩
陈凯
关键词 海底大地电磁小型海底电磁接收机水声通讯    
Abstract

Ocean bottom electromagnetic receivers (OBEMs) are mainly used for high-precision observation and measurement of magnetotelluric signals and controlled-source electromagnetic signals at the sea bottom. To overcome the shortcomings of large volume, high power consumption, and high cost of the existing OBEMs (OBEM-Ⅲ type), this study conducted technical research regarding miniaturization, low power consumption, and low cost. As a result, the overall power consumption of the existing OBEMs (OBEM-Ⅲ type) has been reduced from 1 600 mW to 500 mW or less (by equipment of inductive magnetic sensors) due to the development of a low-power control unit and preamplifier, the installation of low-power fluxgate sensors, and adoption of advanced power management technology. Traditional acoustic releasers are expensive and bulky and require more suitable buoyant materials. By integrating the underwater acoustic communication module and being equipped with the external erosion wearing release device, the MicrOBEMs make release and recovery possible using only a 17-inch glass sphere, thus greatly reducing the volume and hardware cost of the instrument and improving the integration and operation efficiency of devices. Compared to the OBEM-Ⅲ type, the volume, power consumption, and cost of the newly developed MicrOBEMs are reduced by 3/4, 2/3, and 1/2, respectively. A deep-water geomagnetic test was conducted in March 2021 in the southern South China Sea, preliminarily verifying the geomagnetic measurement function of the MicrOBEMs and reflecting that the MicrOBEMs have the advantages of small size, low power consumption, and low cost.

Key wordsmarine magnetotelluric    micro ocean bottom electromagnetic receiver    acoustic telemetry modem
收稿日期: 2021-08-27      修回日期: 2022-02-03      出版日期: 2022-06-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目“拖曳式海洋可控源电磁法电场运动噪声压制与信号增强方法研究”(42174081);“海底MT的运动海水电磁噪声分离方法研究”(41804071);南海U形海疆线综合研究团队项目“U型海疆线—U boundary in the South China Sea”(2019BT02H594);广东省基础与应用基础研究基金项目“南海珠江口陆坡天然气水合物的电磁和地震联合反演解释研究”(2021A1515011526)
通讯作者: 陈凯
作者简介: 罗贤虎(1971-),男,教授级高工,主要从事海洋电磁法及热流探测技术研究工作。Email: luoxianhu@163.com
引用本文:   
罗贤虎, 邓明, 邱宁, 孙珍, 王猛, 景建恩, 陈凯. MicrOBEM:小型海底电磁接收机[J]. 物探与化探, 2022, 46(3): 544-549.
LUO Xian-Hu, DENG Ming, QIU Ning, SUN Zhen, WANG Meng, JING Jian-En, CHEN Kai. MicrOBEM: a micro-ocean-bottom electromagnetic receiver. Geophysical and Geochemical Exploration, 2022, 46(3): 544-549.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1478      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I3/544
Fig.1  MicrOBEM实物照片
Fig.2  数据采集舱结构
Fig.3  数据采集舱电路原理框
Fig.4  数据采集电路原理框(预留的单通道未给出)
Fig.5  水声释放甲板单元原理框
Fig.6  水声释放甲板单元APP界面截图
Fig.7  工区站位布置
序号 站位名 水深/m 仪器编号 备注
1 S1 1932 HA
2 S2 1975 HC
3 S3 1826 HA
4 S4 1693 HA
5 S5 1400 HC 数据无效
6 S5A 1400 HA 补做
Table 1  海底MT站位投放点坐标
Fig.8  实测时间序列片段(站位S3,水深1 826 m)
Fig.9  五个站位MT测深原始数据曲线
[1] Constable S C. Marine electromagnetic induction studies[J]. Surveys in Geophysics, 1990, 11(2/3): 303-327.
doi: 10.1007/BF01901663
[2] Naif S, Key K, Constable S, et al. Melt-rich channel observed at the lithosphere-asthenosphere boundary[J]. Nature, 2013, 495: 356-359.
doi: 10.1038/nature11939
[3] Ichiki M, Baba K, Toh H, et al. An overview of electrical conductivity structures of the crust and upper mantle beneath the northwestern Pacific, the Japanese Islands, and continental East Asia[J]. Gondwana Research, 2009, 16(3/4): 545-562.
doi: 10.1016/j.gr.2009.04.007
[4] Johansen S E, Panzner M, Mittet R, et al. Deep electrical imaging of the ultraslow-spreading Mohns Ridge[J]. Nature, 2019, 567: 379-383.
doi: 10.1038/s41586-019-1010-0
[5] Worzewski T, Jegen M, Kopp H, et al. Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone[J]. Nature Geoscience, 2011, 4(2): 108-111.
doi: 10.1038/ngeo1041
[6] Key K, Constable S, Liu L, et al. Electrical image of passive mantle upwelling beneath the northern East Pacific Rise[J]. Nature, 2013, 495: 499-502.
doi: 10.1038/nature11932
[7] 魏文博, 邓明, 温珍河, 等. 南黄海海底大地电磁测深试验研究[J]. 地球物理学报, 2009, 52(3):740-749.
[7] Wei W B, Deng M, Wen Z H, et al. Experimental study of marine magnetotellurics in southern Huanghai[J]. Chinese Journal of Geophysics, 2009, 52(3), 740-749.
[8] Key K W, Constable S C, Weiss C J. Mapping 3D salt using the 2D marine magnetotelluric method: Case study from Gemini Prospect, Gulf of Mexico[J]. Geophysics, 2006, 71(1): B17-B27.
doi: 10.1190/1.2168007
[9] Constable S C. Review paper: Instrumentation for marine magnetotelluric and controlled source electromagnetic sounding[J]. Geophysical Prospecting, 2013, 61: 505-532.
doi: 10.1111/j.1365-2478.2012.01117.x
[10] Quasar Federal System, QMax EM3[EB/OL].(2010-06)[2020-09]. http://quasarfs.com/downloads/QuasarGeo-QMax-EM3-Datasheet.pdf
[11] Ogawa K, Matsuno T, Ichihara H, et al. A new miniaturized magnetometer system for long-term distributed observation on the seafloor[J]. Earth Planets & Space, 2018, 70(1)111-119.
[12] Chen K, Deng M, Luo X, et al. A micro ocean-bottom E-field receiver[J]. Geophysics, 2017, 82(5): E233-E241.
doi: 10.1190/geo2016-0242.1
[13] 陈凯, 景建恩, 赵庆献, 等. 海底可控源电磁接收机及其水合物勘查应用[J]. 地球物理学报, 2017, 60(11):4262-4272.
[13] Chen K, Jing J E, Zhao Q X, et al. Ocean bottom EM receiver and application for gas-hydrate detection[J]. Chinese Journal of Geophysics, 2017, 60(11):4262-4272.
[1] 汪海峰, 邓明, 陈凯. 海底电磁接收机新进展[J]. 物探与化探, 2016, 40(4): 809-815.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com