Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (1): 122-131    DOI: 10.11720/wtyht.2020.1155
     方法研究·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
利用因子分析和分形分析识别内蒙古黑鹰山地区矿致地球化学异常
龚晶晶, 杨剑洲, 马生明, 苏磊
中国地质科学院地球物理地球化学勘查研究所 自然资源部地球化学探测重点实验室, 河北 廊坊 065000
Recognition of ore-induced geochemical anomaly by combined factor and fractal analysis in Heiyingshan, Inner Mongolia
Jing-Jing GONG, Jian-Zhou YANG, Sheng-Ming MA, Lei SU
Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
全文: PDF(8425 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

结合因子分析和分形分析对内蒙古黑鹰山地区1∶5万地球化学数据进行研究,提取了矿致地球化学异常。针对10个元素的因子分析共提取出3个因子:F1-Zn、Cd、(Cu);F2-Ag、Mo、Cu、Bi;F3-Sn、As、Pb、Sb。进而利用C-A分形分析模型对矿化因子F2进行了分形建模。从“面积-F2因子得分”双对数图中提取出4段分形拟合线,分别代表了“无找矿潜力低背景区”、“背景区”、“高背景区”、“高找矿潜力区”。后续地表检查工作中在“高找矿潜力区”发现了不同程度的矿化蚀变现象。结果表明, F2因子反映了热液成矿过程,可作为研究区主要成矿元素空间聚集的综合指标; C-A分形模型可以准确圈定F2因子“高成矿潜力区”的边界;高成矿潜力区准确指示了进一步的找矿工作。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚晶晶
杨剑洲
马生明
苏磊
关键词 因子分析C-A分形分析矿致地球化学异常内蒙古黑鹰山    
Abstract

Factor analysis and fractal modeling were combined to study the 1:50000 geochemical data of Heiyingshan, Inner Mongolia, so as to recognize ore-induced geochemical anomaly. First, sample factor analysis of 10 elements mainly includes three factors: F1 consists of Zn-Cd-(Cu), F2 consists of Ag-Mo-Cu-Bi, and F3 consists of Sn-As-Pb-Sb. Second, the F2 factor score is further modeled by Concentration-Area (C-A) factor model. The fractal fitting lines of four segments were obtained from the log-log graph of Area-F2 factor score, which represent "low background area without prospecting potential", "background area", "high background area" and "high prospecting potential area", respectively. In the subsequent prospecting work, several mineralizations and alterations were found in the "high prospecting potential area". Some conclusions have been reached: F2 factor reflects the hydrothermal metallogenic process and can be used as a comprehensive index for the spatial aggregation of major metallogenic elements in the study area. The C-A fractal model can accurately delineate the boundary of F2 factor "high metallogenic potential area". The "high metallogenic potential area" can be used as the basis for delineating the prospecting target.

Key wordsfactor analysis    C-A fractal model    ore-induced geochemical anomaly    Heiyingshan, Inner Mongolia
收稿日期: 2019-03-20      出版日期: 2020-03-03
:  P632  
基金资助:中国地质调查局地质调查项目(DD20160040);中国地质科学院地球物理地球化学勘查研究所基本科研业务费项目(AS2017Y03);中国地质科学院地球物理地球化学勘查研究所基本科研业务费项目(YYWF201731)
作者简介: 龚晶晶(1989-),男,工程师,主要从事勘查地球化学研究工作。Email: gongjingjing@igge.cn
引用本文:   
龚晶晶, 杨剑洲, 马生明, 苏磊. 利用因子分析和分形分析识别内蒙古黑鹰山地区矿致地球化学异常[J]. 物探与化探, 2020, 44(1): 122-131.
Jing-Jing GONG, Jian-Zhou YANG, Sheng-Ming MA, Lei SU. Recognition of ore-induced geochemical anomaly by combined factor and fractal analysis in Heiyingshan, Inner Mongolia. Geophysical and Geochemical Exploration, 2020, 44(1): 122-131.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1155      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I1/122
Fig.1  黑鹰山地区区域地质简图(a)及采样点位置(b)
Fig.2  黑鹰山地区Cu地球化学异常分布图(a)、直方图(b)和浓度—数量双对数图(c)
因子 初始特征值 提取载荷平方和 旋转载荷平方和
特征值 方差
百分比/%
累积/% 特征值 方差
百分比/%
累积/% 特征值 方差
百分比/%
累积/%
1 3.256 32.555 32.555 3.256 32.555 32.555 2.253 22.526 22.526
2 1.456 14.559 47.114 1.456 14.559 47.114 1.848 18.480 41.006
3 1.146 11.458 58.572 1.146 11.458 58.572 1.757 17.566 58.572
4 0.918 9.179 67.752
5 0.787 7.873 75.625
6 0.689 6.89 82.516
7 0.539 5.391 87.907
8 0.487 4.871 92.778
9 0.474 4.743 97.521
10 0.248 2.479 100
Table 1  因子分析的特征值和总方差解释率
变量 因子
F1 F2 F3
Zn 0.876 0.211 0.035
Cd 0.705 0.116 0.074
Ag 0.07 0.781 0.063
Mo 0.04 0.740 0.384
Cu 0.580 0.583 0.004
Bi 0.231 0.415 -0.153
Sn 0.199 0.080 0.774
As 0.172 -0.038 0.717
Pb -0.321 -0.097 0.685
Sb 0.128 0.319 0.630
Table 2  因子分析正交旋转因子载荷矩阵
Fig.3  黑鹰山地区岩屑测量元素因子得分地球化学分区
Fig.4  F2因子得分直方图
Fig.5  面积—F2因子得分双对数图
Fig.6  基于C-A分形模型的F2因子得分
Fig.7  图6中b区的地球化学剖析
a—地质图;b—Ag点位符号异常图;c—Mo点位符号异常图;d—Cu点位符号异常图;e—Bi点位符号异常图;f—F2因子得分图;异常下限(A)以全工作区数据剔除离群值后取信度系数1.6确定;Ag、Mo、Cu、Bi 4级色阶分别代表背景(<A)、异常外带(A~2A)、异常中带(2A~4A)、异常内带(>4A)
Fig.8  图6中b区矿化蚀变露头照片
[1] Howarth R J, Sinding-Larsen R . Chapter 6 :Multivariate analysis[G]// Handbook of Exploration Geochemistry,Elsevier Science B.V., 1983: 207-289.
[2] Cohen D R, Kelley D L, Anand R , et al. Major advances in exploration geochemistry, 1998-2007[J]. Geochemistry: Exploration, Environment, Analysis, 2010,10(1):3-16.
[3] 时艳香, 纪宏金, 陆继龙 , 等. 水系沉积物地球化学分区的因子分析方法与应用[J]. 地质与勘探, 2004,40(5):73-76.
[3] Shi Y X, Ji H J, Lu J L , et al. Factor analysis method and application of steam sediment geochemical partition[J]. Geology and Prospecting, 2004,40(5):73-76.
[4] 刘洪, 黄瀚霄, 李光明 , 等. 因子分析在藏北商旭金矿床地球化学勘查中的应用[J]. 中国地质, 2015,42(4):1126-1136.
[4] Liu H, Huang H X, Li G M , et al. Factor analysis in geochemical survey of the Shangxu gold deposit, northern Tibet[J]. Geology in China, 2015,42(4):1126-1136.
[5] Sun X, Deng J, Gong Q , et al. Kohonen neural network and factor analysis based approach to geochemical data pattern recognition[J]. Journal of Geochemical Exploration, 2009,103(1):6-16.
[6] Cheng Q M . Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China[J]. Ore Geology Reviews, 2007,32(1-2):314-324.
[7] Cheng Q, Agterberg F P, Bonham-Carter G F . A spatial analysis method for geochemical anomaly separation[J]. Journal of Geochemical Exploration, 1996,56(3):183-195.
[8] Cheng Q M, Agterberg F P, Ballantyne S B . The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994,51(2):109-130.
[9] Agterberg F P, Cheng Q M, Brown A , et al. Multifractal modeling of fractures in the Lac du Bonnet Batholith, Manitoba[J]. Computers & Geosciences, 1996,22(5):497-507.
[10] Li C, Ma T, Shi J . Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background[J]. Journal of Geochemical Exploration, 2003,77(2-3):167-175.
[11] Zuo R G, Cheng Q M, Agterberg F P , et al. Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China[J]. Journal of Geochemicai Exploration, 2009,101(3):225-235.
[12] Deng J, Wang Q, Yang L , et al. Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China[J]. Journal of Geochemical Exploration, 2010,105(3):95-105.
[13] Afzal P, Alghalandis Y F, Khakzad A , et al. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration-volume modeling[J]. Journal of Geochemical Exploration, 2011,108(3):220-232.
[14] Zuo R, Wang J . Fractal/multifractal modeling of geochemical data: A review[J]. Journal of Geochemical Exploration, 2016,164:33-41.
[15] Zuo R, Xia Q, Zhang D . A comparison study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas[J]. Applied Geochemistry, 2013,33:165-172.
[16] Chen G, Cheng Q, Zhang H . Matched filtering method for separating magnetic anomaly using fractal model[J]. Computers & Geosciences, 2016,90:179-188.
[17] Mandelbrot B, Benoit B . The Fractal Geometry of Nature[J]. American Journal of Physics, 1983,51(3):286.
[18] Cheng Q . The perimeter-area fractal model and its application to geology[J]. Mathematical Geology, 1995,27(1):69-82.
[19] Cheng Q M . Spatial and scaling modelling for geochemical anomaly separation[J]. Journal of Geochemical Exploration, 1999,65(3):175-194.
[20] Xiang Z, Gu X, Wang E , et al. Delineation of deep prospecting targets by combining factor and fractal analysis in the Kekeshala skarn Cu deposit, NW China[J]. Journal of Geochemical Exploration, 2019,198:71-81.
[21] Fyzollahhi N, Torshizian H, Afzal P , et al. Determination of lithium prospects using fractal modeling and staged factor analysis in Torud region, NE Iran[J]. Journal of Geochemical Exploration, 2018,189:2-10.
[22] Afzal P, Tehrani M E, Ghaderi M , et al. Delineation of supergene enrichment, hypogene and oxidation zones utilizing staged factor analysis and fractal modeling in Takht-e-Gonbad porphyry deposit, SE Iran[J]. Journal of Geochemical Exploration, 2016,161:119-127.
[23] 雷良奇, 宋慈安, 杨启军 . 甘肃公婆泉铜矿田中—晚志留世浅海相火山喷发旋回及火山作用演化[J]. 岩石学报, 1998,14(1):100-106.
[23] Lei L Q, Song C A, Yang Q J . The middle and late silurian marine volcano eruption cycle and volcano action evolution of gongpoquan copper ore field, Gangsu Province[J]. Acta Petrologica Sinica, 1998,14(1):100-106.
[24] 聂凤军, 江思宏, 张义 , 等. 中蒙边境及邻区斑岩型铜矿床地质特征及成因[J]. 矿床地质, 2004,23(2):176-189.
[24] Nie F J, Jiang S H, Zhang Y , et al. Geological features and origin of porphyry copper deposits in China-Mongolia border region and its neighboring areas[J]. Mineral Deposits, 2004,23(2):176-189.
[25] 康明, 岑况, 吴悦斌 , 等. 北山戈壁荒漠景观1∶5万地球化学测量方法研究[J]. 地质与勘探, 2004,40(3):64-68.
[25] Kang M, Cen K, Wu Y B , et al. 1∶50 000 Geochemical prospecting methods and techniques in gobi desert landscape in the Beishan area, Northwestern China[J]. Geology and Prospecting, 2004,40(3):64-68.
[26] 范红科, 温银维, 姜羡义 , 等. 内蒙古中东部半干旱荒漠草原景观区岩屑地球化学测量的方法技术及应用效果[J]. 地质与勘探, 2008,44(5):64-69.
[26] Fan H K, Wen Y W, Jiang X Y , et al. Geochemical debris exploration method and its effect in the semi-arid desert and grassland area, East-Central Inner Mongolia[J]. Geology and Prospecting, 2008,44(5):64-69.
[27] Hron K, Templ M, Filzmoser P . Imputation of missing values for compositional data using classical and robust methods[J]. Computational Statistics & Data Analysis, 2010,54(12):3095-3107.
[28] Treiblmaier H, Filzmoser P . Exploratory factor analysis revisited: How robust methods support the detection of hidden multivariate data structures in IS research[J]. Information & Management, 2010,47(4):197-207.
[29] Paul D A . Applications of geochemistry in Targeting with emphasis on large stream and lake sediment data compilations[C]// Sydney:SEG Conference, 2004.
[30] Govett G J S, Goodfellow W D, Chapman R P , et al. Exploration geochemical distribution of elements and recognition of anomalies[J]. Mathematica Geology, 1975,7(5/6):415-446.
[31] Reimann C, Filzmoser P . Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data[J]. Environmental Geology, 2000,9(39):1001-1014.
[32] Reimann C, Filzmoser P, Garrett R G . Factor analysis applied to regional geochemical data: problems and possibilities[J]. Applied Geochemistry, 2002,17(3):185-206.
[33] Vistelius A B . The Skew Frequency Distributions and the Fundamental Law of the Geochemical Processes[J]. The Journal of Geology, 1960,68(1):1-22.
[34] 刘英俊 . 元素地球化学[M]. 北京: 科学出版社, 1984: 548.
[34] Liu Y J . Geochemistry of element[M]. Beijing: Science Press, 1984: 548.
[1] 李欢, 黄勇, 张沁瑞, 贾三满, 徐国志, 冶北北, 韩冰. 北京平原区土壤地球化学特征及影响因素分析[J]. 物探与化探, 2021, 45(2): 502-516.
[2] 耿国帅, 杨帆, 郭建娜. 变换后数据的因子分区标准化在东昆仑东段地球化学异常圈定中的应用[J]. 物探与化探, 2020, 44(1): 112-121.
[3] 李春亮, 张炜. 甘肃省祁连山西段地球化学分区及其特征[J]. 物探与化探, 2018, 42(2): 312-315.
[4] 张秀芝, 王俊达, 张城钢, 谢晓阳. 上黄旗—乌龙沟断裂带走马驿—大河南区段地球化学异常解析[J]. 物探与化探, 2018, 42(1): 14-20.
[5] 李鹏宇, 石文杰, 魏俊浩, 熊乐, 周红智, 尤静静. 青海省兴海县某地区铜多金属找矿潜力评价——基于1:5万土壤化探数据处理与异常信息提取[J]. 物探与化探, 2017, 41(2): 194-202.
[6] 章贤能, 寇尚文, 刘艾华. 安徽宁国东山坞地区土壤地球化学特征与评价[J]. 物探与化探, 2017, 41(1): 71-78.
[7] 何其芬, 魏印涛, 陈宏杰, 刘伟, 寇雅威, 刘彦奎. 青海省裕龙沟地区水系沉积物测量元素组合分区[J]. 物探与化探, 2015, 39(2): 306-310.
[8] 雷传扬, 李瑞峰, 赵保顺, 赵桂秋. 老挝平然地区水系沉积物测量地球化学特征及找矿意义[J]. 物探与化探, 2014, (3): 453-460.
[9] 叶红刚, 张德会, 程主华, 叶红锋, 吴胡. 岩屑地球化学测量在小冰沟铅锌矿区的找矿效果[J]. 物探与化探, 2014, 38(2): 295-303.
[10] 陈国忠, 梁志录, 王建龙, 张愿宁, 李鹏兵. 甘肃合作早子沟金矿原生叠加晕特征及深部预测[J]. 物探与化探, 2014, 38(2): 268-277.
[11] 缪远兴, 罗卫, 唐攀科, 黄燕涛. 广东省麻布岗地区1:5万水系沉积物测量异常评价及找矿方向[J]. 物探与化探, 2014, 38(1): 10-17.
[12] 石文杰, 魏俊浩, 张德才, 赵少卿, 陈冲, 高翔, 翟亚峰, 易建. 基于数字高程模型因子分析的地球化学异常提取[J]. 物探与化探, 2012, 36(1): 103-108.
[13] 陈智贤, 栾文楼. 唐山市区近地表降尘重金属的分布特征及成因[J]. 物探与化探, 2011, 35(6): 833-836.
[14] 杨晓坤, 秦德先, 冯美丽, 蒋顺德, 伍伟, 孙彩霞. 都龙锡锌矿区曼家寨矿段13号矿体化探元素统计[J]. 物探与化探, 2009, 33(3): 274-277.
[15] 钱建平, 何胜飞, 王富民, 程金华. 安徽省廖家地区地质地球化学特征和构造地球化学找矿[J]. 物探与化探, 2008, 32(5): 519-524,528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com