Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (6): 1285-1290    DOI: 10.11720/wtyht.2019.0077
  方法研究·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于压缩感知的复杂地表菲涅尔束偏移
杨飞龙1,2, 俞岱3, 孙渊3
1. 西安石油大学 地球科学与工程学院,陕西 西安 710065
2. 陕西省油气成藏地质学重点实验室,陕西 西安 710065
3. 长安大学 地质工程与测绘学院,陕西 西安 710054
Fresnel beam migration method based on compressed sensing under complex topographic conditions
Fei-Long YANG1,2, Dai YU3, Yuan SUN3
1. College of the Geoscience and Engineering,Xi'an Shiyou University,Xi'an 710065,China
2. Shaanxi Key Laboratory of Petroleum Accumulation Geology,Xi'an 710065,China
3. College of Geology Engineering and Geomatics,Chang'an University,Xi'an 710054,China
全文: PDF(2799 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

高斯束偏移是一种束类地震数据成像方法,该方法可以处理多波至走时,具有良好的成像精度。但在复杂地表条件下应用存在两个问题:一是原有的局部平面波分解方法计算精度不足,影响低信噪比数据成像质量;二是偏移精度取决于射线束传播算子,高斯束传播算子随着传播距离增大发散过快,难以同时保证浅层和中深层构造成像精度,并且高斯束射线传播算子在模型浅部覆盖范围不足,对复杂地表模型成像精度较低。为了解决上述问题,本文将基于压缩感知理论的平面波分解技术应用到复杂地表菲涅尔束偏移中,不仅有效提高了局部平面波分解精度,同时菲涅尔束传播算子有效解决了高斯束算子随传播距离增加束宽发散过大的问题,典型的模型算例验证了本文方法的有效性和稳定性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨飞龙
俞岱
孙渊
关键词 高斯束压缩感知菲涅尔束偏移复杂地表局部平面波分解束算子    
Abstract

Gaussian beam migration (GBM) is a ray-based seismic imaging method,which can handle multi-arrivals and has good imaging accuracy.However,two problems should be taken into consideration when this method is used in complex topographic conditions:First,the original local plane wave decomposition method has insufficient calculation accuracy,which affects the imaging quality of low signal-noise ratio data.Second,the ray beam propagator is the most important factor for migration accuracy.With the enhancement of the propagation distance,the Gaussian beam width increases rapidly and cannot ensure the imaging accuracy of the near surface and depth structures at the same time.In addition,the insufficient coverage of the Gaussian beam in the shallow part of the model might affect the imaging quality of this region.In order to solve the above problem,the authors apply wave decomposition technique based on compressed sensing theory to the complex surface in Fresnel beam migration.It not only effectively improves the precision of local plane wave decomposition,but also solves the problem that the width of Gaussian beam operator is increased quickly with the increase of propagation distance according to the Fresnel beam operator.Typical numerical examples prove the validity and stability of this method.

Key wordsGaussian beam migration (GBM)    compressed sensing(CS)    Fresnel beam migration(FBM)    complex topography    local plane wave decomposition    beam propagator
收稿日期: 2019-02-13      出版日期: 2019-11-28
:  P631.4  
基金资助:陕西省教育厅科研计划项目“基于压缩感知的起伏地表Kirchhoff型动态聚焦束偏移方法”(19JK0668)
作者简介: 杨飞龙(1988-),男,西安石油大学地球科学与工程学院讲师,主要从事地震数据处理及偏移成像方法研究工作
引用本文:   
杨飞龙, 俞岱, 孙渊. 基于压缩感知的复杂地表菲涅尔束偏移[J]. 物探与化探, 2019, 43(6): 1285-1290.
Fei-Long YANG, Dai YU, Yuan SUN. Fresnel beam migration method based on compressed sensing under complex topographic conditions. Geophysical and Geochemical Exploration, 2019, 43(6): 1285-1290.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0077      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I6/1285
Fig.1  不同平面波分解方法对比
a—平面波数据;b—LRT结果;c—CS-LRT结果
Fig.2  各向同性介质中不同射线束振幅实部示意
a—高斯射线束;b—菲涅尔束
Fig.3  起伏地表条件下坐标变换关系
Fig.4  起伏地表层状模型偏移结果
a—速度模型;b—地震记录;c—高斯束偏移结果;d—基于压缩感知的菲涅尔束偏移结果
Fig.5  起伏地表Marmousi模型偏移结果对比
a—速度模型;b—高斯束偏移结果;c—基于压缩感知的菲涅尔束偏移结果
[1] 赵文智, 胡素云, 董大忠 , 等. “十五”期间中国油气勘探进展及未来重点勘探领域[J]. 石油勘探与开发, 2007,34(5):513-520.
[1] Zhao W Z, Hu S Y, Dong D Z , et al. Petroleum exploration progresses during the 10 th Five-Year Plan and key exploration domains for the future in China [J]. Chinese J. Petroleum Exploration and Development(in Chinese), 2007,34(5):513-520.
[2] 李振春 . 地震偏移成像技术研究现状与发展趋势[J]. 石油地球物理勘探, 2014,49(1):1-21.
[2] Li Z C . Research status and development trends for seismic imaging technology[J]. Oil Geophysical Prospecting (in Chinese), 2014,49(1):1-21.
[3] Ceveny V . Expansion of a plane wave into Gaussian beams[J]. Studia Geoph.et geod, 1982,26(2):120-131.
[4] Sun J G . The relationship between the first Fresnel zone and the normalized geometrical spreading factor[J]. Geophysical Prospecting, 1996,44(3):351-374.
[5] Gray S H . Gaussian beam migration of common-shot records[J]. Geophysics, 2005,70(4):71-77.
[6] Hu C, Stoffa P L . Slowness-driven Gaussian-beam prestack depth migration for low-fold seismic data[J]. Geophysics, 2009,74(6):35-45.
[7] 岳玉波, 李振春, 张平 , 等. 复杂地表条件下高斯波束叠前深度偏移[J]. 应用地球物理, 2010,7(2):143-148.
[7] Yue Y B, Li Z C, Zhang P , et al. Prestack Gaussian beam depth migration under complex surface conditions[J]. Applied Geophysics(in Chinese), 2010,7(2):143-148.
[8] 岳玉波, 李振春, 钱忠平 , 等. 复杂地表条件下保幅高斯束偏移[J]. 地球物理学报, 2012,55(4):1376-1383.
doi: 10.6038/j.issn.0001-5733.2012.04.033
[8] Yue Y B, Li Z C, Qian Z P , et al. Amplitude-preserved Gaussian beam migration under complex topographic conditions[J]. Chinese. J. Geophys, 2012,55(4):1376-1383.
[9] 孙辉, 孙建国 . 基于子波的波束偏移[C]// 中国地球物理2013—第二十二分会场论文集, 2013.
[9] Sun H, Sun J G . Beam migration based on wavelet[C]// Chinese Geophysics 2013 Proceedings of the 22 nd Session , 2013.
[10] Wu B, Zhu Z, Yang H, et al. High resolution beam forming for 3D common offset Kirchhoff beam migration[C]// SEG Technical Program Expanded Abstracts 2014: 3837-3841.
[11] 杨继东, 黄建平, 王欣 , 等. 复杂地表条件下叠前菲涅尔束偏移方法[J]. 地球物理学报, 2015,58(10):3758-3770.
[11] Yang J D, Huang J P, Wang X , et al. Prestack Fresnel beam migration method under complex topographic conditions[J]. Chinese. J. Geophys, 2015,58(10):3758-3770.
[12] 高成, 孙建国, 齐鹏 , 等. 2D共炮时间域高斯波束偏移[J]. 地球物理学报, 2015,58(4):1333-1340.
doi: 10.6038/cjg20150420
[12] Gao C, Sun J G, Qi P , et al. 2-D Gaussian-beam migration of common-shot records in time domain[J]. Chinese. J. Geophys, 2015,58(4):1333-1340.
[13] Wang H Z, Bo F, Liu S Y , et al. Characteristic wavefield decomposition,imaging and inversion with prestack seismic data[J]. Chinese. J. Geophys, 2015,58(6):2024-2034.
[14] Sun H, Zhang Z, Hu G , et al. Kirchhoff beam migration based on compressive sensing[J]. IEEE Access, 2018,6:26520-26529.
[15] Sun H, Yang F L, Meng F C , et al. A topographic kirchhoff dynamic focused beam migration method based on compressed sensing[J]. IEEE Access, 2018,6:56666-56674.
[1] 郑浩, 蔡杰雄, 王静波. 基于构造导向滤波的高斯束层析速度建模方法及其应用[J]. 物探与化探, 2020, 44(2): 372-380.
[2] 王守进, 敬朋贵, 蔡杰雄. 基于高斯束理论的有限频核函数计算[J]. 物探与化探, 2019, 43(1): 110-117.
[3] 王海立, 陈炳超, 王婷婷, 于宝华, 张树刚, 马立新. 西部高原咸化地表静校正方法应用[J]. 物探与化探, 2018, 42(5): 1064-1068.
[4] 蔡杰雄. 基于方位—反射角度道集的高斯束层析速度建模方法及实现[J]. 物探与化探, 2018, 42(5): 977-989.
[5] 袁茂林, 蒋福友, 杨鸿飞, 何鑫, 王静波, 黄建平. 高斯束线性正演模拟方法研究[J]. 物探与化探, 2017, 41(5): 881-889.
[6] 路交通, 曹思远, 董建华, 张. 基于稀疏变换的地震数据重构方法[J]. 物探与化探, 2013, 37(1): 175-179.
[7] 周国婷, 潘冬明, 牛欢, 凌丹丹, 夏暖. 层析静校正方法研究与应用[J]. 物探与化探, 2012, 36(5): 802-805,841.
[8] 任福新, 段云卿, 于富文, 隋荣亮. 复杂地表变观方法及效果分析[J]. 物探与化探, 2006, 30(1): 55-58.
[9] 段洪有, 曾庆才, 李琛. 复杂地表条件下折射静校正技术的应用[J]. 物探与化探, 2005, 29(2): 142-145.
[10] 何新贞, 尚新民, 王常波, 石林光, 马利斌. 复杂地表及地下地质条件下地震资料处理中的若干重要环节[J]. 物探与化探, 2004, 28(5): 453-456.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com