Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (3): 634-641    DOI: 10.11720/wtyht.2019.1377
  方法研究·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
跨孔电波衰减成像初始振幅估算方法比较
倪建福, 刘四新()
吉林大学 地球探测科学与技术学院,吉林 长春 130026
Comparison of initial amplitude estimation methods for cross-hole electromagnetic wave attenuation tomography
Jian-Fu NI, Si-Xin LIU()
College of Geo-Exploration Sciences and Technology,Jilin University,Changchun 130026,China
全文: PDF(1279 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

跨孔电磁法衰减层析成像是一种利用电磁波振幅信息的方法,通过发射端到接收端电磁波的振幅变化来反演介质衰减常数分布。发射端振幅也就是初始振幅,一般情况下是未知的,它的精度很大程度上影响到层析成像结果,需要在反演前得到或者通过特殊反演方法来处理。本文总结了4种初始振幅处理方法——线性拟合法、矩阵反演法、双频电磁波法以及相邻道比值法,通过合成数据验证了这四种方法的可行性,并且指出了每种方法的优缺点:线性拟合法适合物性变化不大的情况;矩阵反演法对物性情况要求不高,但计算量较大;双频电磁波法能直接得到电导率分布,但只适合良导体情况;相邻道比值法适用情况最广,但容易受干扰影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
倪建福
刘四新
关键词 跨孔电磁波层析成像衰减常数初始振幅    
Abstract

Cross-hole electromagnetic attenuation tomography is a method that uses the amplitude information of electromagnetic waves to invert the distribution of the attenuation constant of the medium by the amplitude change of the electromagnetic wave from the transmitting to the receiving. Transmitter amplitude is also called the initial amplitude, which is generally unknown. Its accuracy largely affects the tomographic results and it needs to be obtained before inversion or by special inversion methods. This paper summarizes four initial amplitude processing methods, i.e., linear fitting method, matrix inversion method, dual-frequency electromagnetic wave method and neighboring traces method. The feasibility of these four methods is verified by synthetic data, and the advantages and disadvantages of each method are pointed out: Linear fitting method is suitable for the case where the physical property changes little; matrix inversion has low requirements for physical condition, but the amount of calculation is relatively large.; dual-frequency electromagnetic wave method can directly obtain the conductivity distribution, but only for the good conductor case; the applicable situation of neighboring traces method is the most extensive, but it is susceptible to interference.

Key wordscross-hole electromagnetic wave    tomography    attenuation constant    initial amplitude
收稿日期: 2018-10-23      出版日期: 2019-05-31
:  P631  
基金资助:国家自然科学基金项目(41874136);国家重点研发计划“深部矿产资源地球物理综合探测与信息提取”(2016YFC0600505)
通讯作者: 刘四新
作者简介: 倪建福(1996-) ,男,吉林大学在读研究生,主要研究方向为探地雷达方法理论和应用。
引用本文:   
倪建福, 刘四新. 跨孔电波衰减成像初始振幅估算方法比较[J]. 物探与化探, 2019, 43(3): 634-641.
Jian-Fu NI, Si-Xin LIU. Comparison of initial amplitude estimation methods for cross-hole electromagnetic wave attenuation tomography. Geophysical and Geochemical Exploration, 2019, 43(3): 634-641.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1377      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I3/634
Fig.1  模型示意
Fig.2  观测系统示意
Fig.3  衰减常数模型与三种方法层析成像对比
a—衰减常数模型;b—线性拟合法衰减层析成像结果;c— 矩阵反演法衰减层析成像结果;d—相邻道比值法衰减层析成像结果
Fig.4  线性拟合曲线
Fig.5  已知初始振幅时的衰减层析成像
Fig.6  双频电磁波法电导率模型与两组频率电导率层析成像结果对比
a—良导体电导率模型;b—双频电磁波法电导率层析成像结果(1 MHz,1.2 MHz);c—双频电磁波法电导率层析成像结果(10 MHz,12 MHz)
[1] 王均双, 薄夫利, 马冲 . 坑透 CT 成像技术在工作面地质构造探测中的应用[J]. 煤炭科学技术, 2008,36(10):93-96.
[1] Wang J S, Bo F L, Ma C . Application of mine penetration CT imaging technology to probe geological tectonics of fully mechanized top coal caving mining face[J]. Coal Science and Technology, 2008,36(10):93-96.
[2] Fullagar P K, Livelybrooks D W, Zhang P , et al. Radio tomography and borehole radar delineation of the McConnell nickel sulfide deposit, Sudbury, Ontario, CanadaRadio and Radar Delineation[J]. Geophysics, 2000,65(6):1920-1930.
doi: 10.1190/1.1444876
[3] 肖玉林 . 煤矿综采工作面无线电波透视技术研究[D]. 合肥:安徽理工大学, 2010.
[3] XiaoY L . Study on Radio Wave Penetration Technology for Mechanized Coal Face[D]. Hefei:Anhui University Of Science & Technology, 2010.
[4] Zhou B, Fullagar P K . Delineation of sulphide ore-zones by borehole radar tomography at Hellyer Mine, Australia[J]. Journal of Applied Geophysics, 2001,47(3-4):261-269.
doi: 10.1016/S0926-9851(01)00070-2
[5] Peterson, Jr J E . Pre-inversion corrections and analysis of radar tomographic data[J]. Journal of Environmental & Engineering Geophysics, 2001,6(1):1-18.
[6] 于师建, 颜世杰 . “三软煤层” 电磁波吸收特征分析[J]. 煤田地质与勘探, 1999,27(6):60-62.
[6] Yu S J, Yan S J . Analysis on the absorpting characteristics of electromagnetic wave in coal seam with soft coal,roof and floor[J]. Coal Geology & Exporation, 1999,27(6):60-62.
[7] 郭方, 李培根, 齐顺 , 等. 基于测线分类的无线坑透初始场强求取探讨[J]. 煤炭科学技术, 2013,41(12):97-99,104.
[7] Guo F, Li P G, Qi S , et al. Discussion of solving initial field intensity of radio tunnel perspective based on classified probe lines[J]. Coal Science and Technology, 2013,41(12):97-99,104.
[8] 曹俊兴, 朱介寿 . 双频电磁波电导率层析成象[J]. 物探化探计算技术, 1997,19(4):329-332.
[8] Cao J X, Zhu J S . Transmission EM condictivity tomography[J]. Computing Techniqes for Geophysical and Geochemical Exploration, 1997,19(4):329-332.
[9] Holliger K, Musil M, Maurer H R . Ray-based amplitude tomography for crosshole georadar data: A numerical assessment[J]. Journal of Applied Geophysics, 2001,47(3-4):285-298.
doi: 10.1016/S0926-9851(01)00072-6
[10] 张辉, 潘冬明, 刘朋 , 等. 模拟分析初始场强对坑透反演结果的影响[J]. 地球物理学进展, 2016,31(6):2788-2795.
[10] Zhang H, Pan D M, Liu P , et al. Simulation and analysis of the influence of initial field intensity on the inversion results[J]. Progress in Geophysics, 2016,31(6):2788-2795.
[11] 肖玉林, 吴荣新, 严家平 , 等. 工作面坑透场强传播规律及有效透视宽度研究[J]. 煤炭学报, 2017,42(3):712-718.
[11] Xiao Y L, Wu R X, Yan J P , et al. Field strength propagation law of radio wave penetration and effective perspective width for coal face[J]. Journal of China Coal Society, 2017,42(3):712-718.
[12] 宁书年, 张绍红, 杨峰 , 等. 无线电波层析成像技术及在矿井坑透中的应用[J]. 煤炭学报, 2001,26(5):468-472.
[12] Ning S N, Zhang S H, Yang F , et al. Radio wave tomography rechnique and its application in underground radio wave probing[J]. Journal of China Coal Society, 2001,26(5):468-472.
[13] 刘鑫明, 刘树才, 姜志海 , 等. 有耗媒质中任意入射角电磁波传播衰减特性研究[J]. 煤炭科学技术, 2012,40(6):96-99.
doi:
[13] Liu X M, Liu S C, Jiang Z H , et al. Study on propagation attenuation features of random incidence angle electromagetic wave in lossy medium[J]. Coal Science and Technology, 2012,40(6):96-99.
[14] Olsson O, Falk L, Forslund O , et al. Borehole radar applied to the characterization of hydraulically conductive fracture zones in crystalline rock 1[J]. Geophysical prospecting, 1992,40(2):109-142.
doi: 10.1111/gpr.1992.40.issue-2
[15] Holliger K, Bergmann T . Numerical modeling of borehole georadar data[J]. Geophysics, 2002,67(4):1249-1257.
doi: 10.1190/1.1500387
[16] 王飞 . 跨孔雷达走时层析成像反演方法的研究[D]. 吉林大学, 2014.
[16] Wang F . Reseach on crosshole radar traveltime tomography[D]. Jinlin University, 2014.
[17] Paige C C, Saunders M A . LSQR: An algorithm for sparse linear equations and sparse least squares[J]. ACM Transactions on Mathematical Software (TOMS), 1982,8(1):43-71.
doi: 10.1145/355984.355989
[18] 杨薇, 刘四新, 冯彦谦 . 跨孔层析成像 LSQR 算法研究[J]. 物探与化探, 2008,32(2):199-202.
[18] Yang W, Liu S X, Feng Y Q . A study of the LSQR algorithm for cross-hole tomography[J]. Feophysical & Geochemical Exploration, 2008,32(2):199-202.
[19] Maurer H, Musil M . Effects and removal of systematic errors in crosshole georadar attenuation tomography[J]. Journal of Applied Geophysics, 2004,55(3-4):261-270.
doi: 10.1016/j.jappgeo.2004.02.003
[20] 王文娟, 潘克家, 曹俊兴, 等 . 基于 Tikhonov 正则化的双频电磁波电导率成像反演[J]. 地球物理学报, 2009,52(3):750-757.
doi:
[20] Wang W J, Pan K J, Cao J X , et al. Electrical conductivity imaging using dual-frequency EM data based on Tikhonov regularization[J]. Chinese Journal of Geophysics, 2009,52(3):750-757.
[21] Gloaguen E, Marcotte D, Giroux B , et al. Stochastic borehole radar velocity and attenuation tomographies using cokriging and cosimulation[J]. Journal of Applied Geophysics, 2007,62(2):141-157.
doi: 10.1016/j.jappgeo.2006.10.001
[22] 王辉, 常旭, 刘伊克 , 等. 时间域相邻道地震波衰减成像研究[J]. 地球物理学报, 2001,44(3):396-403.
doi:
[22] Wang H, Chang X, Liu Y K , et al. Seismic neighboring traces attenuation tomography in time domain[J]. Chinese Journal of Geophysics, 2001,44(3):396-403.
[23] Cao J, He Z, Zhu J , et al. Conductivity tomography at two frequencies[J]. Geophysics, 2003,68(2):516-522.
doi: 10.1190/1.1567219
[24] 曾昭发, 刘四新, 冯晅 . 探地雷达原理与应用[M]. 北京: 电子工业出版社, 2010.
[24] Zao S F, Liu S X, Feng X. Ground penetrating radar principle and application[M]. Beijing: Publishing House of Electronics Industry, 2010.
[1] 杨利普, 徐志萍, 徐顺强, 刘明军, 姜磊, 熊伟, 贺为民. 薄壁断裂峪河口至方庄段电性结构特征[J]. 物探与化探, 2020, 44(6): 1301-1305.
[2] 高武平, 闫成国, 张文朋, 王志胜. 电阻率层析成像在沉积区隐伏断层探测中的应用[J]. 物探与化探, 2020, 44(6): 1352-1360.
[3] 马董伟. 地震勘探方法在薄覆盖层区城市活断裂探测中的应用[J]. 物探与化探, 2019, 43(5): 1038-1045.
[4] 薛花, 杜民, 文鹏飞, 张宝金, 张如伟. 网格层析速度反演方法在准三维西沙水合物中的应用[J]. 物探与化探, 2017, 41(5): 846-851.
[5] 张倩, 王玲, 江沸菠. 电阻率层析成像的二维改进粒子群优化算法反演[J]. 物探与化探, 2015, 39(5): 1047-1052.
[6] 陈宗刚, 李平宏, 张建成, 林孝城, 薛有平. 声波层析成像在特大涌水地质区域探测中的应用[J]. 物探与化探, 2013, 37(1): 180-185.
[7] 曹云勇. 地震CT技术在龙排冲隧道煤窑采空区勘探中的应用[J]. 物探与化探, 2012, 36(S1): 161-163.
[8] 罗文歆, 朱自强, 赵晓博. 改进模型的层析成像算法[J]. 物探与化探, 2012, 36(4): 674-677.
[9] 冯彦谦, 赵广茂, 孟宪波. 井间地震层析成像技术的应用[J]. 物探与化探, 2011, 35(3): 345-348.
[10] 郑洪伟, 李廷栋, 高锐. 青藏高原地震层析成像的研究进展[J]. 物探与化探, 2011, 35(2): 160-164.
[11] 瞿辰, 杨文采, 于常青. 高分辨率过井地震层析成像的级联算法及其应用[J]. 物探与化探, 2010, 34(6): 814-820.
[12] 邓业灿, 李毅臻, 严大千, 李向民. 旧桥基础桩弹性波层析成像检测方法技术[J]. 物探与化探, 2010, 34(3): 407-409.
[13] 左建军, 林松辉, 孔庆丰, 魏国华, 魏洪泉, 李九生. 井间地震技术在永新地区的应用[J]. 物探与化探, 2009, 33(5): 557-561.
[14] 杨晓弘 何继善 谢冬琪. 速度层析成像正反演技术研究[J]. 物探与化探, 2009, 33(2): 217-219.
[15] 吴有林, 陈贻祥, 聂士诚. 跨孔电磁波透视法在荷叶塘高架桥岩溶探测中的应用[J]. 物探与化探, 2009, 33(1): 102-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com