Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (3): 643-648    DOI: 10.11720/wtyht.2020.1414
     工程勘察 本期目录 | 过刊浏览 | 高级检索 |
基于二维电测深数据作三维反演的基岩探测
李忠平, 王晓华
中国冶金地质总局 山东正元地质勘查院,山东 济南 250014
Bedrock detection based on two-dimensional electrical sounding data for three-dimensional inversion
Zhong-Ping LI, Xiao-Hua WANG
Zhengyuan Geology & Exploration Institute of Shandong,Bureau of China Metallurgy and Geology,Jinan 250014,China
全文: PDF(3304 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在城市基岩面探测时,受到城市交通、电磁等严重干扰的制约,常选用直流电测深作为主要物探方法。二维电测深剖面沿测线排列电极,采集视电阻率数据后进行二维反演,用所获得剖面方向上的二维电阻率断面图像推断地质体的位置及产状。但由于复杂的实际情况并非适合二维反演条件(走向无限延展并与测线正交),二维反演会产生较大误差。为此,可试用测区多剖面二维电测深数据作三维反演,获得测区三维电阻率立体图像,推断地质体分布的空间形态。在山东某市地质调查中,布设点距50 m、线距为100 m电测深测网,采集二维对称四极测深数据。对该测区二维电极排列建立三维反演数据格式后,进行三维电阻率反演,获得测区三维电阻率图像,推断的基岩面与钻探验证基本一致。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李忠平
王晓华
关键词 对称四极测深二维测深电极排列数据格式三维电阻率反演基岩面    
Abstract

In the detection of urban bedrock surfaces, due to the severe urban traffic and electromagnetic interference, direct current sounding is often used as the main geophysical method. The two-dimensional electrical sounding profile arranges electrodes along the survey line, collects the apparent resistivity data and performs two-dimensional inversion, and uses the obtained two-dimensional resistivity cross-sectional image in the direction of the profile to infer the location and attitude of the geological body. However, due to the complicated actual situation, it is not suitable for the two-dimensional inversion conditions (infinitely extending and orthogonal to the survey line), and the two-dimensional inversion will produce large errors. In view of such a situation, three-dimensional inversion of multi-section two-dimensional electric sounding data of the survey area can be used to obtain three-dimensional resistivity stereo images of the survey area, and the spatial form of geological body distribution can be inferred. In a geological survey of a city in Shandong Province, an electrical sounding network with a distance of 50m and a line spacing of 100m was set up to collect two-dimensional symmetrical quadrupole sounding data. After establishing a three-dimensional inversion data format for the two-dimensional electrode arrangement in the survey area, a three-dimensional resistivity inversion was performed to obtain a three-dimensional resistivity image of the survey area. The inferred bedrock surface is basically the same as the drilling verification.

Key wordssymmetrical quadrupole sounding    2D sounding electrode arrangement    data format    three-dimensional resistivity inversion    bedrock surface
收稿日期: 2019-09-02      出版日期: 2020-06-24
:  P631  
作者简介: 李忠平(1965-),男,硕士,高级工程师,从事物探找矿研究工作。Email: xjywt@163.com
引用本文:   
李忠平, 王晓华. 基于二维电测深数据作三维反演的基岩探测[J]. 物探与化探, 2020, 44(3): 643-648.
Zhong-Ping LI, Xiao-Hua WANG. Bedrock detection based on two-dimensional electrical sounding data for three-dimensional inversion. Geophysical and Geochemical Exploration, 2020, 44(3): 643-648.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1414      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I3/643
Fig.1  二维测深剖面布置
Fig.2  平面电极点位分布
Fig.3  测区二维测深反演电阻率断面
Fig.4  三维反演基岩面立体图
Fig.5  三维反演基岩面水平垂直切片
Fig.6  不同深度三维反演基岩面切片
Fig.7  三维反演基岩面验证成果
1—第四系山前组;2—推断基岩面;3—奥陶系马家沟组五阳山段;4—验证钻孔
Fig.8  3号剖面二维测深反演断面及三维Y-Z平面反演断面
1—第四系山前组;2—推断基岩面;3—奥陶系马家沟组五阳山段;4—验证钻孔
[1] 刘常鸿, 王甲, 穆海旗, 等. 某地区金属矿激电测深传统解译与三维解译效果的对比分析[J]. 西部资源, 2018(1):169-170,173.
[1] Liu C H, Wang J, Mu H Q, et al. A comparative analysis of the traditional interpretation and three-dimensional interpretation of IP sounding in a metal mine[J]. Western Resources, 2018(1):169-170,173.
[2] 宋丽蓉, 于常青, 郑绵平, 等. 利用地球物理方法探测火山沉积型硼矿——在西藏阿里地区的应用[J]. 地球物理学报, 2017,60(4):1584-1594.
[2] Song L R, Yu C Q, Zheng M P, et al. Exploration of volcanic-sedimentary boron deposits by geophysical methods—application in the Ali region of Tibet[J]. Journal of Geophysics, 2017,60(4):1584-1594.
[3] 吴小平, 刘洋, 王威. 基于非结构网格的电阻率三维带地形反演[J]. 地球物理学报, 2015,58(8):2706-2717.
[3] Wu X P, Liu Y, Wang W. 3-D topographic inversion of resistivity based on unstructured grids[J]. Journal of Geophysics, 2015,58(8):2706-2717.
[4] 戴前伟, 肖波, 冯德山, 等. 基于二维高密度电阻率勘探数据的三维反演及应用[J]. 中南大学学报:自然科学版, 2012,43(1):293-300.
[4] Dai Q W, X Bo, Feng D S, et al. Three-dimensional inversion and application based on two-dimensional high-density resistivity exploration data[J]. Journal of Central South University:Science and Technology, 2012,43(1):293-300.
[5] 胡祥云, 李焱, 杨文采, 等. 大地电磁三维数据空间反演并行算法研究[J]. 地球物理学报, 2012,55(12):3969-3978.
[5] Hu X Y, Li W, Yang W C, et al. Study on parallel algorithm of magnetotelluric three-dimensional data space inversion[J]. Chinese Journal of Geophysics, 2012,55(12):3969-3978.
[6] 柯敢攀, 黄清华. 井地电法的三维正反演研究[J]. 北京大学学报:自然科学版, 2009,45(2):264-272.
[6] Ke G P, Huang Q H. Three-dimensional forward and inversion of borehole-geoelectric method[J]. Journal of Peking University:Natural Science Edition, 2009,45(2):264-272.
[7] 安然, 李桐林, 徐凯军. 井地三维电阻率反演研究[J]. 地球物理学进展, 2007,22(1):247-249.
[7] An R, Li T L, Xu K J. Research on 3-D resistivity inversion in borehole and ground[J]. Progress in geophysics, 2007,22(1):247-249.
[8] 吴小平. 非平坦地形条件下电阻率三维反演[J]. 地球物理学报, 2005,48(4):932-936.
[8] Wu X P. Three-dimensional inversion of resistivity under non-flat terrain[J]. Journal of Geophysics, 2005,48(4):932-936.
[9] 吴小平, 汪彤彤. 电阻率三维反演方法研究进展[J]. 地球物理学进展, 2002,17(1):156-162.
[9] Wu X P, Wang T T. Progress in 3-D resistivity inversion[J]. Progress in geophysics, 2002,17(1):156-162.
[10] SaSaki Y. 用有限元法实现三维电阻率反演[J]. 石油物探译丛, 1995(4):85.
[10] SaSaki Y. Three-dimensional resistivity inversion by finite element method[J]. Petroleum Geophysical Interpretation Series, 1995(4):85.
[11] Loke M H, Barker R D. Practical techniques for 3D resistivity surveys and data inversion[J]. Geophysical Prospecting, 1996,44:499-523.
[12] Park S. Fluid migration in the vadose zone from 3D inversion of resistivity monitoring data[J]. Geophysics, 1998,63(1):41-59.
[13] Daily W, Owen E. Cross-borehole resistivity tomography[J]. Geophysics, 1991,56(8):1228-1235.
[14] Shima H, Sakayama T. Resistivity tomography:An approach to 2D resistivity inverse problem[A]// 57th SEG,Expaded Abstracts[C]. 1987: 204-207.
[15] Shima H. Two-dimensional automatic resistivity inversion technique using alpha centers[J]. Geophysics, 1990,55(6):682-694.
[16] Shima H. 2D and 3D resistivity image recostruction using alpha centers[J]. Geophysics, 1992,57(10):1270-1281.
[17] Sasaki Y. Resolution of resistivity tomography inferred from numerial simulation[J]. Geophysical Prospecting, 1992,40:453-463.
[18] Dabas M, et al. 3D inversion in subsurface electrical surveyingⅠ:Theory[J]. Geophys.J. Int., 1994,119:975-990.
[19] Sasaki Y. 3D resistivity inversion using the finite element method[J]. Geophysics, 1994,59(11):1839-1848.
[1] 陆泽峰. 高山峡谷地区桥址区岩溶发育特征地球物理勘察[J]. 物探与化探, 2021, 45(1): 252-256.
[2] 张伟, 胡蕾, 张钊搏. LEMI-417型地球深部电磁场观测系统的数据格式解析[J]. 物探与化探, 2020, 44(4): 810-815.
[3] 李富, 周洪福, 葛华. 不同类型滑坡体的高密度电阻率法勘察电性特征[J]. 物探与化探, 2019, 43(1): 215-221.
[4] 苏永军, 梁建刚, 张国利, 孟利山, 高学生, 贺福清. 不同电法组合在找水中的应用[J]. 物探与化探, 2014, 38(5): 925-928.
[5] 苑守成, 陈达, 罗先中. 激电测深法勘查效果的对比分析[J]. 物探与化探, 2006, 30(6): 529-532.
[6] 韩永琦, 张守智. 用VB编写高密度电法数据格式转换程序[J]. 物探与化探, 2000, 24(4): 317-320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com