Please wait a minute...
E-mail Alert Rss
 
物探与化探  2006, Vol. 30 Issue (4): 348-353    
  论文 本期目录 | 过刊浏览 | 高级检索 |
元素-铅同位素示踪在云浮硫铁矿区 土壤铊污染研究中的应用
刘敬勇1,2,3, 常向阳1,2, 涂湘林1
1. 中国科学院 广州地球化学研究所, 广东 广州 510640;
2. 广州大学 环境科学与工程学院, 广东 广州 510006;
3. 中国科学院 研究生院, 北京 100039
THE APPLICATION OF ELEMENT AND LEAD ISOTOPE TRACING TO THALLIUM CONTAMINATION IN SOIL OF THE YUNFU PYRITE MINE
LIU Jing-yong1,2,3, CHANG Xiang-yang1,2, TU Xiang-lin1
1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
2. School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China;
3. Graduate School of Chinese Academy of Sciences, Beijing 100039, China
全文: PDF(896 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

不同源区铅同位素的组成不同,因此可以利用铅同位素的这种"指纹"特征来示踪铅的不同源区。近年来铅同位素示踪在研究土壤中相关重金属来源及其运移途径起到独特的作用。由于铊和铅具有相似的地球化学性质,并且在云浮硫铁矿区污染土壤中其分布与铅有很好的相关性,笔者利用铅同位素作为示踪工具探讨了土壤中铊的污染特征,初步研究表明铊污染物主要累积在土壤深度0~16.5cm范围内,深度为16.5cm以下土壤受到废渣中铊污染的影响较小,但废渣周围土壤深度约44cm范围已经受到来自废渣中铊的影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高景华
刘建勋
张保卫
王小江
徐明才
关键词 天然气水合物反射地震断裂构造钻孔验证合成地震记录    
Abstract

The environmental pollutant has the same lead isotope composition as its source, and hence we can determine the accurate contaminative source through the study of lead isotope composition. In recent years lead isotope tracing has been playing its unique role in studying the source and migration of heavy metals in soil. As Tl and Pb have similar geochemical characteristics, the distribution and migration of Tl in the surface soil of the Yunfu pyrite mine have good correlation with Pb. In this study, therefore, the element and lead isotope tracing was used to study the migration of thallium in soil. Element and lead isotope tracing shows that thallium pollutants are mainly accumulated in top soil of about 0-16.5 cm, and that the soil is subjected less pollution in deeper soil. The soil around the slags at the depth of some 44 cm is affected by Tl leaching from the slags.

Key wordsnatural gas hydrate    seismic reflection    fault structure    drilling verification    synthetic seismogram
收稿日期: 2005-11-11      出版日期: 2006-08-24
: 

P632

 
基金资助:

广东省科技计划项目(2004B33301021)、广东省科技厅重大专项子项目(2004A30308002-4)、广州市属高校科技计划重点项目(2034)联合资助

作者简介: 刘敬勇(1979-),男,硕士.2003年毕业于中国地质大学(武汉),研究方向为环境地球化学.
引用本文:   
刘敬勇, 常向阳, 涂湘林. 元素-铅同位素示踪在云浮硫铁矿区 土壤铊污染研究中的应用[J]. 物探与化探, 2006, 30(4): 348-353.
LIU Jing-yong, CHANG Xiang-yang, TU Xiang-lin. THE APPLICATION OF ELEMENT AND LEAD ISOTOPE TRACING TO THALLIUM CONTAMINATION IN SOIL OF THE YUNFU PYRITE MINE. Geophysical and Geochemical Exploration, 2006, 30(4): 348-353.
链接本文:  
https://www.wutanyuhuatan.com/CN/      或      https://www.wutanyuhuatan.com/CN/Y2006/V30/I4/348

[1] Xiao T,Boyle D,Guha J,et al.Groundwater-related thallium transfer processes and their impact on the ecosystem:southwest Guizhou Province,China[J].Applied Geochemistry,2003,18:675.
[2] Xiao T,Guha J,Boyle D,et al.Environmental concerns related to high thallium levels in soils and thallium uptake by plants in south-west Guizhou,China[J].The Science of the Total Environment,2004,318:223.
[3] Yang C X,Chen Y H,Peng P A,et al.Distribution of natural and anthropogenic thallium in highly weathered soils[J].The Science of Total Environment,2005,341:159.
[4] Brockhaus A,Dolgner R,Ewerrs V,et al.Intake and health effects of thallium among a population living in the vicinity of cement plant emitting thallium-containing dust[J].Intern Arch Occup Environ Health,1981,84:375.
[5] Smith I C,Carson B L.Trace Metals in the Environment[A].Volume 1-Thallium[C].Michigan:Ann.Arbor Science Pubblishers Inc.1997.307.
[6] Ziko V.Toxicity and pollution potential of thallium[J].The Science of the Total Environment.1975,4:185.
[7] 杨春霞,陈永亨,彭平安,等.含铊黄铁矿冶炼废渣在自然淋滤过程中铊的迁移与释放[J].环境科学研究,2005,18(2):99.
[8] 吴颖娟,陈永亨,刘汝峰,等.云浮硫铁矿废渣中铊的模拟淋滤试验[J].环境化学,2000,19(5):14.
[9] Mukai H,Tanaka A,Fujii T,et al.Regional Characteristics of Sulfur and Lead Isotope Ratios in the Atmosphere at Several Chinese Urban Sites[J].Environ Sci Technol,2001,35:1064.
[10] Cristina R M,Mercedes G E,Estela B D.Effects of heavy metals on microbial activity of water and sediment communities[J].Water,Air&Soil Pollution,1999,15(2):179.
[11] Krusche A V,Camargo P B,Cerri C E,et al.Acid rain and nitrogen deposition in a sub-tropical watershed(Piracicaba):ecosystem consequences[J].Environmental Pollution,2003,121(3):389.
[12] 陈好寿,裴辉东,张霄宇,等.杭州市区土壤铅、锶同位素示踪研究[J].浙江地质,1999,15(1):43.
[13] Chow T J,Patterson C C.Lead isotopes in gasoline and aerosols of Los Angeles basin,California[J].Science,1965,147:502.
[14] Hansmann W,Kppel V.Lead-isotopes as tracers of pollutants in soils[J].Chemical Geology,2000,171(1-2):123.
[15] Teutsch N,Erel Y,Hallicz L,et al.Distribution of natural and anthropogenic lead in Mediterranean soils[J].Geochimica et Cosmochimica ACTA,2001,17:2853.
[16] Trefry J H,Metz S,Trocine R P,et al.A decline in lead transport by the Mississippi River[J].Science,1985,230:439.
[17] Chiaradia M,Gulson B L,James M,et al.Identification of secondary lead sources in the air of an urban environment[J].Atmospheric Environment,1997,31(21):3511.
[18] Outridge P M,Hermanson M H,Lockort W L.Regional variations in atmospheric deposition and sources of anthropogenic lead in sediments across the Canada Arctic[J].Geochimica et Cosmochimica ACTA,2000,66(20):3521.
[19] Duzgoren-Aydin N S,Li X D,Wong S C.Lead contamination and isotope signatures in the urban environment of Hong Kong[J].Environmental international,2004,30:209.
[20] Wong C S C,Li X D.Pb contamination and Isotopic composition of urban soils in Hong Kong[J].The science of the total Environmental,2004,319(7):185.
[21] Gulson B L,Tiller K G,Mizon K J.Use of lead isotopes in soils to identify the source of lead contamination near Adelaide,south Australia[J].Environmental Science &Technology,1981,15(6):691.
[22] Williams D E,Trace element accumulation,movement,and distribution in the soil profile from massive application of sewage sludge[J].Soil Science,1980,129(2):114.
[23] Zhu B Q,Chen Y W,Peng J.Lead isotope geochemistry of the urban environmental in the Pearl River Delta[J].Applied Geochemistry,2001,16(8):409.
[24] 陈毓蔚,江帮杰,陈鸿德,等.广州和佛山城区汽车尾气铅环境地球化学研究[A].赵振华.环境地球化学研究进展[C].广州:华南理工大学出版社,1996.29.
[25] Ketterer M E,Lowryb J H,Humphriesc K,et al.Lead isotopic and chalcophile element compositions in the environment near a zinc smelting-secondary zinc recovery facility,Palmerton,Pennsylvania,USA[J].Applied Geochemistry,2001,16:207.
[26] Sonke J E,Hoogewerff J A,Van S R,et al.A chemical and mineralogical reconstruction of Zn-smelter emissions in the Kempen region(Belgium),based on organic pool sediment cores[J].The Science of the Total Environment,2002,292:101.
[27] 杨元根,刘丛强,张国平,等.土壤和沉积物中重金属积累极其Pb、S同位素示踪[J].地球与环境,2004,32(1):76.
[28] Miller E K,Friedland A J.Lead migration in forest soil:response to changing atmospheric inputs[J].Environmental science Technology,1994,28:662.
[29] Whitehead K,Ramsey M H,Maskall J,et al.Determination of the extent of anthropogenic Pb migration through fractured sandstone using Pb isotope tracing[J].Applied Geochemistry,1997,12:75.
[30] 姚玉增,金成洙.铅同位素示踪技术及其在辽宁省矿业环境评价中的应用前景[J].地质与资源,2004,13(4):242.
[31] 刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984.393.
[32] 颜文,刘孝义,龙江平.铊(Tl)--一个不可忽视的土壤污染元素[J].土壤学进展,1995,23(3):21.
[33] 陈永亨,谢文彪,吴颖娟,等.铊的环境生态迁移于扩散[J].广州大学学报(自然科学版),2002,1(3):62.
[34] 张宝贵,张乾,潘家永.粤西大降坪超大型黄铁矿矿床微量元素特征及其成因意义[J].地质与勘探,1994,30,(4):66.
[35] 王正辉,罗世昌,林朝惠,等.含铊黄铁矿的苹果酸淋滤实验研究[J].地球化学,2000,29(3):283.
[36] 杨春霞.含铊黄铁矿利用过程中毒害重金属铊的迁移释放行为研究[D].广州:中国科学究院广州地球化学研究所,2004.
[37] 潘家永,张乾,张宝贵.粤西大降坪硫铁矿床地球化学特征及其成因探讨[J].矿床地质,1994,13(3):231.
[38] Bacon J R,Hewitt I.Heavye metals deposited from the atmosphere on upland Scottish soils:chemical and lead isotope studies of the association of metals with soil components[J].Geochimica et Cosmochimica Acta,2005,69(1):19.

[1] 邢锦程, 袁炳强, 张春灌, 冯旭亮, 段瑞锋, 薛健, 贾洪杨, 李想. 特立尼达盆地重力场特征及油气远景[J]. 物探与化探, 2021, 45(6): 1606-1616.
[2] 王光文, 王海燕, 李洪强, 李文辉, 庞永香. 地震正演技术在深反射地震剖面探测中的应用[J]. 物探与化探, 2021, 45(4): 970-980.
[3] 王佳龙, 邸兵叶, 张宝松, 赵东东. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3): 576-582.
[4] 许文强, 袁炳强, 刘必良, 姚长利. 多种重磁位场边缘识别方法及在南黄海北部断裂构造识别中的应用研究[J]. 物探与化探, 2020, 44(4): 962-974.
[5] 沙志彬, 万晓明, 赵忠泉, 梁金强, 杨瑞召, 白钰, 柴祎. 叠前同时反演技术在珠江口盆地西部海域天然气水合物储层预测中的应用[J]. 物探与化探, 2019, 43(3): 476-485.
[6] 付康伟, 张学强, 彭炎. BP神经网络算法在陆域天然气水合物成藏预测中的应用[J]. 物探与化探, 2019, 43(3): 486-493.
[7] 张富贵, 周亚龙, 张舜尧, 唐瑞玲, 王惠艳, 孙忠军. 热释汞:一种冻土区天然气水合物地球化学勘查新技术[J]. 物探与化探, 2019, 43(2): 329-337.
[8] 李洋, 刘东明, 林振洲, 王宇航, 贾定宇, 欧洋. 木里地区水合物钻孔井壁构造裂缝特征[J]. 物探与化探, 2019, 43(1): 84-89.
[9] 孙春岩, 王栋琳, 张仕强, 贺会策, 赵浩, 凌帆, 尹文斌. 深海甲烷电化学原位长期监测技术及其在海洋环境调查和天然气水合物勘探中的意义[J]. 物探与化探, 2019, 43(1): 1-16.
[10] 田郁, 胡祥云, 乐彪. 倾子在地球物理断裂构造解释中的应用[J]. 物探与化探, 2018, 42(6): 1237-1244.
[11] 龙慧, 孙晟, 刘义, 郭淑君. 西宁盆地北西缘南门峡—台子地区断裂构造地球物理探测[J]. 物探与化探, 2018, 42(2): 241-246.
[12] 葛志广, 陈永生, 周小仙. 漠河冻土带天然气水合物地震采集关键技术[J]. 物探与化探, 2018, 42(2): 285-291.
[13] 方慧, 孙忠军, 徐明才, 林振洲. 冻土区天然气水合物勘查技术研究主要进展与成果[J]. 物探与化探, 2017, 41(6): 991-997.
[14] 高景华, 刘建勋, 张保卫, 王小江, 徐明才. 高精度地震探测陆域天然气水合物的有效性研究[J]. 物探与化探, 2017, 41(6): 1005-1011.
[15] 孙忠军, 方慧, 刘建勋, 张舜尧. 祁连山冻土区三露天天然气水合物矿藏勘查模型[J]. 物探与化探, 2017, 41(6): 998-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com