Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (2): 348-355    DOI: 10.11720/wtyht.2024.2158
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
多组分碳同位素录井在天然气勘探中的应用——以琼东南盆地BD21地区为例
胡益涛1(), 张焕旭2, 倪朋勃3, 郝为3, 瞿煜扬2, 校韩立2
1.中法渤海地质服务有限公司湛江分公司,广东 湛江 524057
2.苏州冠德能源科技有限公司,江苏 苏州 215129
3.中法渤海地质服务有限公司,天津 300450
Application of multi-component carbon isotope logging in natural gas exploration: A case study of the BD21 area, Qiongdongnan Basin
HU Yi-Tao1(), ZHANG Huan-Xu2, NI Peng-Bo3, HAO Wei3, QU Yu-Yang2, XIAO Han-Li2
1. Zhanjiang Branch, China France Bohai Geoservices Co., Ltd., Zhanjiang 524057, China
2. Suzhou Grand Energy Technology Co. Ltd., Suzhou 215129, China
3. China France Bohai Geoservices Co., Ltd., Tianjin 300450, China
全文: PDF(3353 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了了解琼东南盆地深海油气田天然气的成藏特征,对琼东南盆地天然气井进行了连续多组分碳同位素测量。通过对一口重点井连续碳同位素剖面测量及与周边井重点层段碳同位素值对比分析,探讨了该井天然气的成因类型与气源。结果表明:研究区三亚组一段以上为干气,以生物气和亚生物气为主,三亚组二段之下为湿气,为热成因气,主要是伴生气;BD21-1区块天然气存在两种来源,即始新统高熟油型气和特殊成因的低熟崖城组来源气。研究表明,多组分碳同位素录井技术可用于研究天然气的成因类型、气源及成熟度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡益涛
张焕旭
倪朋勃
郝为
瞿煜扬
校韩立
关键词 琼东南盆地碳同位素录井成因类型崖城组    
Abstract

This study aims to ascertain the accumulation characteristics of natural gas in the deep-water oil and gas fields in the Qiongdongnan Basin. To this end, it performed continuous multi-component carbon isotope measurements for natural gas wells in the basin. Based on the comparative analysis of a continuous carbon isotope profile from a key well in the basin and the carbon isotope values from key intervals in surrounding wells, this study delved into the genetic types and sources of natural gas in the key well. The results show that dry gas occurs above the first member of the Sanya Formation, dominated by biogenic and secondary biogenic gases. In contrast, wet thermogenic gas exists below the second member of the formation, primarily including associated gas. Besides, natural gas in the BD21-1 block originates from two sources: Eocene high-maturity oil-formed gas and low-maturity gas with a special genesis from the Yacheng Formation. Overall, multi-component carbon isotope logging is effective in investigating the genetic types, sources, and maturity of natural gas.

Key wordsQiongdongnan Basin    carbon isotope log    genetic type    Yacheng Formation
收稿日期: 2022-04-01      修回日期: 2023-07-17      出版日期: 2024-04-20
ZTFLH:  TE122.14  
  P597  
基金资助:中国海洋石油集团公司重大专项课题“双孔介质储层测录井综合评价技术与作业方案优化研究”(YXKY-2021-ZJ-01)
作者简介: 胡益涛(1984-),男,工程师,2008年毕业于长江大学地球物理学院,硕士,主要从事录井科研和生产管理工作。Email:huyt@cfbgc.com
引用本文:   
胡益涛, 张焕旭, 倪朋勃, 郝为, 瞿煜扬, 校韩立. 多组分碳同位素录井在天然气勘探中的应用——以琼东南盆地BD21地区为例[J]. 物探与化探, 2024, 48(2): 348-355.
HU Yi-Tao, ZHANG Huan-Xu, NI Peng-Bo, HAO Wei, QU Yu-Yang, XIAO Han-Li. Application of multi-component carbon isotope logging in natural gas exploration: A case study of the BD21 area, Qiongdongnan Basin. Geophysical and Geochemical Exploration, 2024, 48(2): 348-355.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.2158      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I2/348
深度/
m
碳同位素/‰ 深度/
m
碳同位素/‰
δ13C1 δ13C2 δ13C3 δ13C1 δ13C2 δ13C3
1519 -51.49 -32.27 -31.85 3839 -50.56 -31.50 -31.45
1820 -51.28 -31.93 -31.59 3954 -51.73 -32.36 -32.55
2015 -51.47 -32.23 -32.08 3993 -50.85 -31.68 -31.67
2320 -51.60 -31.96 -32.66 4002 -50.99 -31.49 -31.59
2706 -51.51 -32.30 -32.28 4096 -50.65 -31.77 -31.40
3023 -51.92 -31.81 -32.52 4154 -51.40 -32.47 -31.90
3197 -51.01 -31.70 -32.47 4320 -51.29 -32.17 -31.36
3312.37 -51.60 -32.52 -32.26 4675 -50.76 -31.92 -31.65
3538 -51.83 -32.40 -32.47 4821 -50.89 -32.10 -32.01
3538 -51.58 -32.58 -32.18 4955 -51.20 -31.80 -32.11
3546 -50.99 -31.94 -31.87 5115 -50.75 -32.15 -31.60
3546 -50.70 -31.53 -31.53 三开
校验
-51.20 -32.20 -32.43
3550 -50.41 -31.62 -31.41 四开
校验
-50.99 -31.80 -31.90
3638 -50.91 -31.78 -31.60 标准差 0.41 0.38 0.40
Table 1  BD21-1区块A井碳同位素标准样品验校记录
Fig.1  琼东南盆地天然气探井位置
Fig.2  多组分碳同位素剖面
层位 碳同位素/‰
δ13C1 δ13C2 δ13C3
黄流组 - 72.57 ~ - 68.32 - 70.39 ( 155 )
梅山组 - 70.42 ? ~ - 62.46 - 66.98 ( 82 )
三亚组一段 - 64.69 ? ~ - 62.19 - 63.15 ( 69 )
三亚组二段 - 64.87 ? ~ - 40.23 - 49.55 ( 948 ) - 35.48 ? ~ - 26.37 - 30.25 ( 449 ) - 35.92 ? ~ - 26.15 - 30.94 ( 282 )
陵水组二段 - 43.18 ~ - 39.97 - 41.46 ( 62 ) - 31.54 ~ - 26.78 - 29.29 ( 42 ) - 30.97 ~ - 27.54 - 29.42 ( 35 )
陵水组三段 - 46.26 ~ - 39.00 - 43.05 ( 621 ) - 32.02 ~ - 25.94 - 28.31 ( 154 ) - 29.29 ~ - 26.89 - 28.14 ( 5 )
崖城组 - 45.45 ~ - 36.56 - 42.00 ( 398 ) - 30.99 ~ - 27.19 - 28.70 ( 7 )
Table 2  天然气多组分碳同位素特征
Fig.3  A井钻遇天然气成因判识
Fig.4  BD21构造及周边井储层δ13C1—干燥系数特征(松涛凸起、松南凹陷、松南低凸、陵水凹陷碳同位素及组分数据取自生产天然气,数据引自文献[7]、[8]、[13]、[21];其他数据来自同位素录井,皆为随钻泥浆气碳同位素数据。图5同)
Fig.5  BD21构造及周边井储层δ13C1-δ13C2特征
[1] Cesar J, Mayer B, Deblonde C, et al. Alternative indicators to assess the distribution characteristics of methane,ethane,and propane derived from petroleum in the Montney Formation,Western Canada[J]. Fuel, 2021, 294(15):1-14.
[2] Ellis L, Berkman T, Uchytil S, et al. Integration of mud gas isotope logging (MGIL) with field appraisal at Horn Mountain Field,deepwater Gulf of Mexicl[J]. Journal of Petroleum Science and Engineering, 2007, 58(3):443-463.
doi: 10.1016/j.petrol.2007.03.001
[3] 慈兴华, 张焕旭, 牛强, 等. 碳同位素现场检测技术分析致密油气充注特征——以渤海湾盆地民丰洼陷北斜坡为例[J]. 天然气工业, 2019, 39(11):10-17.
[3] Ci X H, Zhang H X, Niu Q, et al. Analysis of tight oil and gas charging characteristics by the carbon isotope filed detection technology:A case study of the northern slope of the Minfeng sub-sag in the Bohai Bay Basin[J]. Natural Gas Industry, 2019, 39(11):10-17.
[4] 谢玉洪. 中国海洋石油总公司油气勘探新进展及展望[J]. 中国石油勘探, 2018, 23(1):26-35.
doi: 10.3969/j.issn.1672-7703.2018.01.003
[4] Xie Y H. New progress and prospect of oil and gas exploration of China National Offshore Oil Corporation[J]. China Petroleum Exploration, 2018, 23(1):26-35.
doi: 10.3969/j.issn.1672-7703.2018.01.003
[5] 王振峰, 孙志鹏, 朱继田, 等. 南海西部深水区天然气地质与大气田重大发现[J]. 天然气工业, 2015, 35(10):11-20.
[5] Wang Z F, Sun Z P, Zhu J T, et al. Natural gas geological characteristics and great discovery of large gas fields in deep water area of the western South China Sea[J]. Natural Gas Industry, 2015, 35(10):11-20.
[6] 施和生, 杨计海, 张迎朝, 等. 琼东南盆地地质认识创新与深水领域天然气勘探重大突破[J]. 中国石油勘探, 2019, 24(6):691-698.
doi: 10.3969/j.issn.1672-7703.2019.06.001
[6] Shi H S, Yang J H, Zhang Y Z, et al. Geological understanding innovation and major breakthrough to natural gas exploration in deep water in Qiongdongnan Basin[J]. China Petroleum Exploration, 2019, 24(6):691-698.
[7] 郭书生, 廖高龙, 梁豪. 琼东南盆地BD21井深水区天然气勘探重大突破及意义[J]. 中国石油勘探, 2021, 26(5):49-59.
[7] Guo S S, Liao G L, Liang H, et al. Major breakthrough and significance of deep-water gas exploration in Well BD21 in Qiongdongnan Basin[J]. China Petroleum Exploration, 2021, 26(5):49-59.
[8] 梁刚, 甘军, 游君君, 等. 琼东南盆地低熟煤型气地球化学特征及勘探前景[J]. 天然气地球科学, 2020, 31(7):895-903.
[8] Liang G, Gan J, You J J, et al. Geochemical characteristics and exploration prospect of low mature coal-derived gas in Qiongdongnan Basin[J]. Natrual Gas Geoscience, 2020, 31(7):895-903.
[9] 石晓, 刘汉彬, 张佳, 等. 激光光谱技术在稳定同位素组成分析中的应用现状[J]. 世界核地质科学, 2016, 33(4):237-243.
[9] Shi X, Liu H B, Zhang J, et al. Laser spectrometry for stable isotope analysisand its application status[J]. World Nuclear Geoscience, 2016, 33(4):237-243.
[10] 牛强, 瞿煜扬, 慈兴华, 等. 碳同位素录井技术发展现状及展望[J]. 录井工程, 2019, 30(3):8-15,184.
[10] NIu Q, Qu Y Y, Ci X H, et al. Development status and prospect of carbon isotope logging technology[J]. Mud Logging Engineering, 2019, 30(3):8-15,184.
[11] 宋祥, 魏兵. Isologger气体同位素录井仪[J]. 录井工程, 2017, 28(2):95-98,137.
[11] Song X, Wei B. Isologger gas isotope logger[J]. Mud Logging Engineering, 28(2):95-98,137.
[12] 耿恒, 陈沛, 陈鸣. 实时甲烷碳同位素录井在南海西部YC1-1-1井的应用[J]. 录井工程, 2016, 27(4):45-48,93-94.
[12] Geng H, Chen P, Chen M. Application of rea-time methane carbon isotope logging in YC1-1-1 well in the west of the South China Sea[J]. Mud Logging Engineering, 2016, 27(4):45-48,93-94.
[13] 张迎朝, 甘军, 徐新德, 等. 琼东南盆地深水东区Y8-1含气构造天然气来源及侧向运聚模式[J]. 地球科学, 2019, 44(8):2609-2618.
[13] Zhang Y Z, Gan J, Xu X D, et al. The source and natural gas lateral migration accumulation model of Y8-1 gas bearing structure,east deep water in the Qiongdongnan basin[J]. Earth Science, 2019, 44(8):2609-2618.
[14] 张迎朝, 徐新德, 甘军, 等. 琼东南盆地深水大气田地质特征、成藏模式及勘探方向研究[J]. 地质学报, 2017, 91(7):1620-1633.
[14] Zhang Y Z, Xu X D, Gan J, et al. Study on the geological characteristics,accumulation model and exploration direction of the giant deepwater gas field in the Qiongdongnan basin[J]. Acta Geologica Sinica, 2017, 91(7):1620-1633.
[15] 陈建平, 王绪龙, 倪云燕, 等. 准噶尔盆地南缘天然气成因类型与气源[J]. 石油勘探与开发, 2019, 46(3):461-473.
doi: 10.11698/PED.2019.03.05
[15] Chen J P, Wang X L, Ni Y Y, et al. Genetic type and source of natural gas in the southern margin of Junggar Basin,NW China[J]. Petroleum and Development, 2019, 46(3):461-473.
[16] 戴金星. 各类天然气的成因鉴别[J]. 中国海上油气, 1992, 6(1):11-19.
[16] Dai J X. Identification of various genetic natural gases[J]. China Offshore Oil & Gas, 1992, 6(1):11-19.
[17] 戴金星. 各类烷烃气的鉴别[J]. 中国科学:B辑, 1992, 2:185-193.
[17] Dai J X. Identification of various alkane gas[J]. Scientia Sinica:B, 1992, 2:185-193.
[18] 戴金星. 煤成气及鉴别理论研究进展[J]. 科学通报, 2018, 63(14):1291-1305.
[18] Dai J X. Coal-derived gas theory and its discrimination[J]. Chinese Science Bulletin, 2018, 63(14):1291-1305.
[19] 梁刚, 甘军, 徐新德, 等. 实时碳同位素录井技术在琼东南盆地松涛凸起天然气成因及成藏分析中的应用[J]. 中国海上油气, 2018, 30(3):56-61.
[19] Liang G, Gan J, Xu X D, et al. Application of real-time carbon isotope logging technology in genesis and reservoir formation of natural gas in Songtao uplift,Qiongdongnan basin[J]. China Offshore Oil and Gas, 2018, 30(3):56-61.
[20] 刘妍鷨, 陈红汉, 苏奥, 等. 从含油气检测来洞悉琼东南盆地东部发育始新统烃源岩的可能性[J]. 地球科学, 2016, 41(9):1539-1547.
[20] Liu Y H, Chen H H, Su A, et al. Eocene source rock determination in Qiongdongnan Basin,the south Chian Sea:A hydrocarbon detection perspective[J]. Earth Science, 2016, 41(9):1539-1547.
[21] 梁刚, 甘军, 游君君, 等. 琼东南盆地低熟煤型气地球化学特征及勘探前景[J]. 天然气地球科学, 2020, 31(7):895-903.
[21] Liang G, Gan J, You J J, et al. Geochemical characteristics and exploration prospect of low mature coal-derived gas in Qiongdongnan Basin[J]. Natural Gas Geoscience, 2020, 31(7):895-903.
[1] 赵泽霖, 李俊建, 张彤, 倪振平, 彭翼, 宋立军. 华北地区稀土矿床特征及找矿方向[J]. 物探与化探, 2022, 46(1): 46-57.
[2] 何丽娟, 王振峰, 邓勇, 张毅, 钟泽红, 张志让, 王利杰. 虚拟井技术在琼东南深水区储层预测中的应用[J]. 物探与化探, 2016, 40(2): 390-397.
[3] 刘爱群, 陈殿远, 李强, 张丽丽. 琼东南盆地二号断裂带坡折区速度研究进展[J]. 物探与化探, 2012, 36(6): 922-927.
[4] 宫进忠, 楚福录, 刘振东. 河北省含铁岩系的地球化学特征[J]. 物探与化探, 2006, 30(5): 393-396.
[5] 印修章, 胡爱珍. 以闪锌矿标型特征浅论豫西若干铅锌矿成因[J]. 物探与化探, 2004, 28(5): 413-414,417.
[6] 郭友钊, 赵国春, 孙忠军, 董杰. 河北省侵入岩成因类型分布与边缘成矿的岩石物理研究[J]. 物探与化探, 2001, 25(5): 372-378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com