Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (4): 838-844    DOI: 10.11720/wtyht.2022.3270
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
地温测量在地热勘查中的应用
汪名鹏1,2(), 杨俊松1,2, 刘彦华1,2
1.江苏省水文地质海洋地质勘查院,江苏 淮安 223005
2.江苏省水文地质工程地质勘察院,江苏 淮安 223005
Application of geothermal measurement in the geothermal exploration
WANG Ming-Peng1,2(), YANG Jun-Song1,2, LIU Yan-Hua1,2
1. Hydrogeological and Marine Geological Exploration Institute of Jiangsu Province, Huai'an 223005, China
2. Hydrogeological and Engineering Geological Investigation Institute of Jiangsu Province, Huai'an 223005, China
全文: PDF(6488 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地温测量是研究地温场分布最直接的方法。地热热源的强度与分布,直接影响地壳表层土壤温度场的分布,特别是存在热储层、热运移通道等都会使地温场的分布产生异常。在研究区16个民井和32个钻孔中进行地温测量,分析地温场分布状况以及地下热水活动规律,效果明显。结果表明研究区浅孔与深孔地温场平面特征一致,越接近东北角地温越有增加的趋势,而且地温异常区呈NNE向条带状分布,宽度约700 m,与NNE向断裂展布方向一致,地温最高点位于NW向断裂与NNE向断裂交汇处。研究区在纵向上地温分布特征差异性明显,地下热水分布范围较小,具有一定局限性,主要受构造断裂、岩溶发育程度等控制,温度低的地下水大量涌入导致地下水温降低,地温梯度出现异常;这种地温梯度异常现象也说明了研究区地下热水主要储存于灰质白云岩或角砾岩的裂隙溶洞中,裂隙、岩溶成为地下热水良好的运移通道。地温测量方法圈定了研究区地热异常区范围,为进一步勘查地热提供了重要的依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪名鹏
杨俊松
刘彦华
关键词 地热勘查地温测量地温场地热异常    
Abstract

Geothermal measurement is the most direct method to study the distribution of geothermal field. The intensity and distribution of geothermal heat sources directly affect the distribution of the soil temperature field in the surface layer of the earth's crust, especially the existence of thermal reservoirs and thermal transport channels can cause anomalies in the distribution of the geothermal field. Geothermal measurements were carried out in 16 civil wells and 32 boreholes in the study area to analyze the distribution of geothermal field and the pattern of underground hot water activity, and the results were obvious.The results show that the geothermal field at shallow depths is laterally consistent with that at deep depths, with the temperature tending to increase toward the northeastern corner of the study area, and that the anomalous geothermal areas are distributed as a NNE-oriented strip, with a width of about 700 m, which is consistent with the NNE-oriented faults. The highest geothermal point is located at the intersection of the NW and NNE-trending faults.. The vertical geothermal distributions in the study area are distinct. The geothermal water is limited to a narrow area. The low-temperature groundwater inflows into the tectonic faults and karsts, with volumes controlled with the development degrees of them, leading to an abnormal geothermal gradient. This anomaly also indicated that the geothermal water in the Lasozi Mountain area is mainly stored in fissures and karst caves of limy dolomite or breccia rocks, with fissures and caves providing good pathways for the geothermal water to flow. The geothermal measurement method has traced the range of geothermal anomalies in the study area, which provides an important basis for further geothermal investigation.

Key wordsgeothermal exploration    geothermal measurement    geothermal field    geothermal anomaly
收稿日期: 2019-05-15      修回日期: 2021-11-15      出版日期: 2022-08-20
ZTFLH:  P631  
作者简介: 汪名鹏(1973-),男,硕士,教授级高级工程师,主要从事地质勘查与研究工作。Email: ahwmp@163.com
引用本文:   
汪名鹏, 杨俊松, 刘彦华. 地温测量在地热勘查中的应用[J]. 物探与化探, 2022, 46(4): 838-844.
WANG Ming-Peng, YANG Jun-Song, LIU Yan-Hua. Application of geothermal measurement in the geothermal exploration. Geophysical and Geochemical Exploration, 2022, 46(4): 838-844.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.3270      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I4/838
Fig.1  研究区位置示意
Fig.2  研究区基岩地质
Fig.3  地温测量孔分布范围
点号 不同孔深测温结果/℃ 点号 不同孔深测温结果/℃ 点号 不同孔深测温结果/℃
2m 3m 4m 5m 2m 3m 4m 5m 2m 3m 4m 5m
M1 21.0 20.6 21.2 23.1 M11 22.6 21.9 22.6 24.1 M21 23.0 23.0 22.5 22.2
M2 20.1 19.2 18.8 19.8 M12 20.8 19.8 19.9 20.8 M22 22.8 21.8 20.5 20.5
M3 21.0 20.6 21.0 22.8 M13 19.8 18.5 18.5 19.8 M23 26.3 24.8 24.0 23.5
M4 18.8 18.0 17.8 17.7 M14 18.8 17.8 17.8 18.2 M24 24.5 23.2 23.0 23.2
M5 21.2 19.2 17.8 17.4 M15 20.5 19.0 18.2 18.9 M25 25.2 22.8 22.0 22.3
M6 21.1 19.1 17.8 17.8 M16 20.7 19.1 18.3 19.0 M26 18.9 18.1 18.0 17.8
M7 20.8 19.2 18.7 18.7 M17 22.0 20.0 19.1 18.9 M27 20.5 19.7 18.8 20.0
M8 19.4 17.8 17.0 17.0 M18 21.0 19.0 18.0 17.9 M28 20.9 20.0 19.0 20.1
M9 20.1 18.6 17.3 16.3 M19 20.8 18.8 17.5 17.3 M29 20.7 19.0 18.9 18.2
M10 20.9 19.2 17.8 17.0 M20 21.5 20.5 20.0 19.8 M30 20.4 19.0 18.5 20.1
Table 1  5 m测温孔不同深度测量数据
点号 孔深/m 不同深度测温结果/℃
2 3 4 5 6 7 8 9 10 15 20 25 孔底
N1 25.6 21.0 24.0 24.0 24.1 25.0 26.1 27.5 28.2 29.7 34.2 38.5 41.5 42.0
N2 26.0 20 18.9 18.5 19.2 19.8 20.8 21.8 22.4 23.1 26.6 30.2 33.0 33.0
N3 27.7 20.1 17.8 17.8 18.8 18.9 19.0 19.8 20.2 21.0 23.8 26.8 29.0 30.3
N4 25.0 19.0 17.4 17.4 17.6 18.4 19.0 19.9 20.1 20.5 22.5 24.2 30.6 30.6
N5 28.35 22.0 18.4 I8.4 18.4 18.9 19.5 20.5 21.2 22 24.9 28.2 30.8 32.8
N6 30.0 20.5 16.8 16.8 16.8 16.9 17.5 18.0 18.1 18.4 19 19.9 20.0 20.5
Table 2  典型民井不同深度测温数据
Fig.4  5 m埋深地温等值线
Fig.5  浅孔地温随深度变化曲线
点号 井深/m 不同深度测温结果/℃
30 40 50 60 70 80 90 孔底
N10 93.0 24.1 25.5 26.5 28.0 29.5 31.2 31.8 32.2
N11 95.0 23.0 24.5 26.2 26.5 27.5 28.2 29.4 29.5
N12 88.5 24.5 26 28.2 30.5 31.5 32.5 32.5
Table 3  深井测温数据
点号 孔深/m 不同深度测温结果/℃
60 65 66 68 70 74 75 80 85 90 92 94 95
T1 106.78 50 50 50 50 50 50 50 50
T2 142.4 38 40 41 41 41 41 41 41
点号 孔深/m 不同深度测温结果/℃
96 98 100 104 105 106 110 115 120 130 135 140 142
T1 106.78 50 49.5 49 48.5 48
T2 142.4 42 43 44 44 45 45 44.5 45 45
Table 4  探采结合钻孔测温数据
Fig.6  90 m埋深地温等值线
Fig.7  等温线断面
[1] 闵望, 喻永祥, 陆燕, 等. 苏北盆地地热资源评价与区划[J]. 上海国土资源, 2015, 36(3):90-94,100.
[1] Min W, Yu Y X, Lu Y, et al. Assessment and zoning of geothermalresources in the northern Jiangsu Basin[J]. Shanghai Land &Resources, 2015, 36(3):90-94,100.
[2] 陈仲候, 王兴泰, 杜世汉. 工程与环境物探教程[M]. 北京: 地质出版社, 1996.
[2] Chen Z H, Wang X T, Du S H. Engineering and environmental geophysical tutorials[M]. Beijing: Geological Publishing House, 1996.
[3] 汪名鹏. 洪泽县老子山地热资源现状及开发利用前景分析[J]. 地下水, 2008, 30(6):53-55,64.
[3] Wang M P. Analysis of present status and prospects of geothermal resources development and utilization in Laozi Mountain area of Hongze County[J]. Ground Water, 2008, 30(6):53-55,64.
[4] 胡玉禄, 胡红文, 张景康, 等. 5m地温测量在地热勘探中的应用[J]. 水文地质工程地质, 2003, 30(4),83-85.
[4] Hu Y L, Hu H W, Zhang J K, et al. Application of five-meter ground temperature survey to the geothermal exploration[J]. Hydrogeology & Engineering Geology, 2003, 30(4),83-85.
[5] 汪名鹏, 韩光海, 顾萍. 洪泽县老子山地热矿区地热资源赋存特征[J]. 煤田地质与勘探, 2009, 37(2):47-50,54.
[5] Wang M P, Han G H, Gu P. Geololgical features of geothermal resource in Laozi Mountain area of Hongze County[J]. Coal Geology & Exploration, 2009, 37(2):47-50,54.
[6] 谭静强, 琚宜文, 侯泉林, 等. 淮北煤田宿临矿区现今地温场分布特征及其影响因素[J]. 地球物理学报, 2009, 52(3) : 732-739.
[6] Tan J Q, Ju Y W, Hou Q L, et al. Distribution characteristics and influence factors of present geo-temperature field in Su-Lin mine area, Huaibei coalfield[J]. Chinese Journal Of Geophysics, 2009, 52(3) : 732-739.
[7] 杨峰田, 庞忠和, 王彩会, 等. 苏北盆地老子山地热田成因模式[J]. 吉林大学学报:地球科学版, 2012, 42(2),468-475.
[7] Yang F T, Pang Z H, Wang C H, et al. Genesis model of laozishan geothermal field, Subei basin[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(2),468-475.
[8] 罗璐, 庞忠和, 杨峰田, 等. 江苏老子山地热田成因分析[C]// 中国地球物理2010—中国地球物理学会第二十六届年会、中国地震学会第十三次学术大会论文集, 2010.
[8] Luo L, Pang Z H, Yang F T, et al. Cause analysis of Laozi Mountain thermal field in Jiangsu Province[C]// China Geophysics 2010—26th Annual Meeting of China Geophysical Society,Papers Collection of 13th Academic Conference of China Seismological Society, 2010.
[1] 孙海川. 兰州新区西部恐龙园区块地热地质条件分析[J]. 物探与化探, 2022, 46(6): 1411-1418.
[2] 梁雨东, 任康辉, 姜鑫, 丁保艳, 童品贤, 胡沛青. 活性炭测氡法在地热勘探中的应用——以张掖—民乐盆地为例[J]. 物探与化探, 2022, 46(6): 1419-1424.
[3] 王佳龙, 邸兵叶, 张宝松, 赵东东. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3): 576-582.
[4] 陈晓晶, 虎新军, 李宁生, 仵阳, 程国强, 倪萍, 曹园园, 卜进兵. 银川盆地东缘地热成藏模式探讨[J]. 物探与化探, 2021, 45(3): 583-589.
[5] 章惠, 隋少强, 钱烙然, 汪新伟. 多种非震方法在山东齐河地热勘查中的应用[J]. 物探与化探, 2020, 44(4): 727-733.
[6] 郭嵩巍, 刘小畔, 郑凯, 张磊. 基于全区视电阻率的瞬变电磁一维Occam反演中雅克比矩阵的解析算法[J]. 物探与化探, 2020, 44(3): 559-567.
[7] 朱怀亮, 胥博文, 刘志龙, 石峰, 辛玉齐, 曹学刚, 程国强. 大地电磁测深法在银川盆地地热资源调查评价中的应用[J]. 物探与化探, 2019, 43(4): 718-725.
[8] 孙海川, 刘永亮, 邵程龙. 综合物探在海石湾地区地热勘查中的应用[J]. 物探与化探, 2019, 43(2): 290-297.
[9] 马晓东, 刘洪波, 白锦林. 综合物探在莘县地区地热勘查中的应用[J]. 物探与化探, 2014, (3): 461-464.
[10] 张杰, 王兴春, 赵敬洗, 郭鑫, 杨毅, 邓晓红, 武军杰. 河北沽源、饶阳地区浅层地温场特征[J]. 物探与化探, 2013, 37(2): 237-241.
[11] 杨守渠, 翟雷, 铁健康. 洛阳市龙门高温地热井的综合物探勘查[J]. 物探与化探, 2012, 36(4): 562-566.
[12] 胡宁, 张良红, 高海发. 综合物探方法在嘉兴地热勘查中的应用[J]. 物探与化探, 2011, 35(3): 319-324.
[13] 张勇, 孙祥民. 综合物探方法在王家庄地热田勘查中的应用[J]. 物探与化探, 2010, 34(6): 810-813.
[14] 吴述来, 何力. 地球化学方法在麻林桥低温热水勘查中的应用[J]. 物探与化探, 2007, 31(3): 216-217.
[15] 徐光辉, 余钦范, 袁学诚. 深部地热勘查方法在北京地区应用的探讨[J]. 物探与化探, 2007, 31(1): 9-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com