Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (2): 490-495    DOI: 10.11720/wtyht.2021.2580
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
一种快速建立上覆岩层压力体的方法
周星(), 李英, 郭军, 何玉
中海石油(中国)有限公司 天津分公司,天津 300459
A fast method for establishing pressure body of overburden
ZHOU Xing(), LI Ying, GUO Jun, HE Yu
Tianjin Branch,CNOOC Ltd.,Tianjin 300459,China
全文: PDF(3734 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

上覆岩层压力是地层沉积压实作用的源动力,也是地层孔隙压力计算的重要基础数据。本文通过Eaton公式推导出密度变化与上覆岩层压力和孔隙压力的计算模型,验证了不同厚度下低密度泥岩对上覆岩层压力以及孔隙压力的影响关系,证实密度差异为0.3 g/cm3、厚度从100~500 m的低密泥岩对孔隙压力的影响最大仅为 0.02 psi,从3~250 Hz的频率扫描密度曲线计算得到的上覆岩层压力几乎无差别,证实上覆岩层压力仅代表沉积地层的低频成分,因此根据正常压实地层有效应力和上覆岩层压力的关系确定了基于井控地震层速度场转换上覆岩层压力体的快速方法。以渤海西部某构造为例,新方法求取的上覆岩层压力体被多口钻井一一验证,满足了快速勘探评价的需求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周星
李英
郭军
何玉
关键词 上覆岩层压力体密度影响层速度    
Abstract

Overburden pressure is the source power of sedimentary compaction,and is also the key data to compute core pressure.This paper shows density variation with overburden pressure and core pressure,the effect of different thicknesses of mudstone on overburden pressure and core pressure.It is proved that the maximum core pressure variation is 0.02 while density variation of mudstone is 0.3 g/cm3 from 100 to 400 m,and overburden pressure is almost the same by density integration which is filtered form 3 to 250 Hz,which represents low-frequency tendency.Therefore,on the basis of the relationship between the effective stress of the normal compacted formation and the pressure of the overlying strata,a fast method was established for converting the pressure field according to the well-controlled seismic layer velocity field,which was verified by multiple drill holes in some structure of West Bohai Sea,thus satisfying rapid exploration.

Key wordsoverburden pressure    density effect    interval velocity
收稿日期: 2019-12-13      修回日期: 2020-11-12      出版日期: 2021-04-20
ZTFLH:  P631.4  
作者简介: 周星(1985-),女,2013年毕业于同济大学,主要从事压力预测工作。Email: zx-8501@163.com
引用本文:   
周星, 李英, 郭军, 何玉. 一种快速建立上覆岩层压力体的方法[J]. 物探与化探, 2021, 45(2): 490-495.
ZHOU Xing, LI Ying, GUO Jun, HE Yu. A fast method for establishing pressure body of overburden. Geophysical and Geochemical Exploration, 2021, 45(2): 490-495.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.2580      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I2/490
Fig.1  渤海典型井平面分布
Fig.2  密度分布特征
Fig.3  渤海典型井上覆岩层压力
Fig.4  渤中某构造6口井上覆岩层压力po与拟合po-fit
Fig.5  不同厚度的低密泥岩模型
Fig.6  不同厚度泥岩计算的上覆岩层压力
Fig.7  不同厚度泥岩计算得到的压力系数
Fig.8  东三段层位与钻井平面分布
Fig.9  渤中某构造速度场与地震叠合
Fig.10  上覆岩层压力与地震叠合
Fig.11  不同方法求取对比
[1] 樊洪海, 张传进, 纪荣艺, 等. 上覆岩层压力梯度合理计算及拟合方法[J]. 石油钻探技术, 2002,30(6):589-596.
[1] Fan H H, Zhang C J, Ji R Y, et al. Determination and regression of Overburden Pressure Gradient[J]. Petroleum Drilling Techniques, 2003,38(6):589-596.
[2] 樊洪海, 叶志. 三维上覆岩层压力计算方法研究[J]. 岩石力学与工程学报, 2011,30(2):3878-3883.
[2] Fan H H, Ye Z. Investigation on three-dimensional overburden pressure calculation method[J]. Chinese Journal of Rock Mechanics and Engineering, 2011,30(2):3878-3883.
[3] Fred J H. 地震振幅解释[M].孙夕平,赵良武译. 北京: 石油工业出版社, 2006.
[3] Fred J H. Seismic amplitude interpretation[M].Sun X P,Zhao L W,Tran. Beijing: Petroleum Industry Press, 2006.
[4] Wyllie M R J, Grerory A R, Gardner G H F. An experimental investigation of factors affecting elastic wave velocities in porous media[J]. Geophysics, 1958,23(3):459-493.
[5] King M S. Wave velocities in rocks as a function of changes in overburden pressure and pore fluid saturants[J]. Geophysics, 1966,31(1):50-73.
[6] 沈联蒂, 史歌. 岩性、含油气性、有效覆盖压力对纵、横波速度的影响[J]. 地球物理学报, 1994,37(3):391-398.
[6] Shen L D, Shi G. Effect of lithologic character,petroleum and effective overburden pressure on compressional wave and shear wave[J]. Chinese J. Geophysics, 1994,37(3):391-398.
[7] 马中高, 伍向阳, 王中海, 等. 有效压力对岩石纵横波速度的影响[J]. 勘探地球物理进展, 2006,29(3):183-186.
[7] Ma Z G, Wu X Y, Wang Z H, et al. Effect of effective pressure on compressional and shear wave velocities[J]. Progress in Exploration Geophysics, 2006,29(3):183-186.
[8] Eaton B A. The effect of overburden stress on geopressure prediction from well Logs[J]. Journal of Petroleum Technology, 1972,24(8):929-934.
[9] 马中高. 碎屑岩地震岩石物理学特征研究[D]. 成都:成都理工大学, 2008.
[9] Ma Z G. Study on the rock physics properties of clastic formation[D]. Chengdu:Chengdu University of Technology, 2008.
[10] Han D H. Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[D]. Palo Alto:Stanford University, 1986.
[11] Faust L. Velocity function including lithologic variation[J]. Geophysics, 1953,18(2):271-287.
[12] 臧艳彬, 王瑞和, 李新芝, 等. 基于密度测井资料计算上覆岩层压力的不确定性分析[J]. 中国石油大学学报:自然科学版, 2010,34(6):60-65.
[12] Zang Y B, Wang R H, Li X Z, et al. Uncertainty analysis of calculating overburden pressure based on density logging data[J]. Journal of China University of Petroleum:Natural Science Edition, 2010,34(6):60-65.
[13] 国春香, 郭淑文, 翟桐立, 等. 地震压力系数预测在深层天然气勘探中的应用[J]. 物探与化探, 2017,41(5):852-855.
[13] Guo C X, Guo S W, Zhai T L, et al. The application of prediction of seismic pressure coefficient to deep gas exploration[J]. Geophysical and Geochemical Exploration, 2017,41(5):852-855.
[14] 刘爱群, 范彩伟, 蔡军, 等. 高温高压盆地东方区黄流组三维压力建模技术[J]. 物探与化探, 2016,40(2):423-427.
[14] Liu A Q, Fan C W, Cai J, et al. The three-dimensional pressure modeling technology for Huangliu formation of Dongfang area in the HTHP basin[J]. Geophysical and Geochemical Exploration, 2016,40(2):423-427.
[15] 李中, 刘和兴, 李磊, 等. 基于改进的Bowers 法预测南海陵水深水高温地层异常压力[J]. 西安石油大学学报:自然科学版, 2019,34(6):60-66.
[15] Li Z, Liu H X, Li L, et al. Prediction of abnormal pressure in Lingshui deep-water high temperature formation based on improved Bowers method[J]. Journal of Xi'an Shiyou University:Natural Science Edition, 2019,34(6):60-66.
[16] Bowers G L. Determining an appropriate pore-pressure estimation strategy[M]. Houston:Offshore Technology Conference, 2001.
[17] 范芬, 刘爱群, 任科英, 等. 乐东—陵水坡折带速度分析及时深转换方法[J]. 物探与化探, 2016,40(6):1185-1191.
[17] Fan F, Liu A Q, Ren K Y, et al. Velocity analysis and time-depth conversion study of Ledong-Lingshui slope-break belt[J]. Geophysical and Geochemical Exploration, 2016,40(6):1185-1191.
[18] 许知齐. 页岩油异常地层压力预测方法的研究[D]. 武汉:长江大学, 2018.
[18] Xu Z Q. Study on prediction method of abnormal stratigraphic pressure of shale oil[D]. Wuhan:Yangtze University, 2018.
[19] 沈章洪. 渤海油田古近系超压成因分类及分布特征[J]. 中国海上油气, 2016,28(3):31-36.
[19] Shen Z H. Genetic classification and distribution characteristics of overpressure in the Paleogene of Bohai oil fields[J]. China Offshore Oil and Gas, 2016,28(3):31-36.
[20] 沈章洪. 镜面反射——大套泥岩地震强反射的一种成因[J]. 中国海上油气, 2012,24(1):43-46.
[20] Shen Z H. Mirror reflection:a cause of the strong seismic record from massive mud rocks[J]. China Offshore Oil and Gas, 2012,24(1):43-46.
[1] 蔡连初, 缪念有. 探地雷达宽角反射图形拟合方法[J]. 物探与化探, 2021, 45(1): 239-244.
[2] 罗天柱, 胡明顺, 韩迪, 任义强. VSP初至逐层递推层速度反演研究及应用[J]. 物探与化探, 2019, 43(3): 608-617.
[3] 国春香, 郭淑文, 翟桐立, 邢兴, 陈璞. 地震压力系数预测在深层天然气勘探中的应用[J]. 物探与化探, 2017, 41(5): 852-855.
[4] 周珺, 谢春辉, 杨鹏. VSP初至逐层递推反演层速度[J]. 物探与化探, 2012, 36(2): 242-245.
[5] 王衍棠, 王立飞, 曾祥辉, 金华峰. 南黄海盆地和北黄海盆地地震速度分析[J]. 物探与化探, 2008, 32(3): 241-246.
[6] 蒋传琳, 蒋传志, 吕鑫方. 400余米深单孔波速测试体会[J]. 物探与化探, 2005, 29(2): 183-184,188.
[7] 焦存礼, 周杰, 尚雅珍. 变速成图系统技术关键及其在塔中西部的应用[J]. 物探与化探, 2003, 27(3): 189-193.
[8] 常建华, 张玉娥, 林卫, 史英龙, 秋剑霞. 三维叠前深度偏移处理技术应用[J]. 物探与化探, 1999, 23(4): 32-276.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com