Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (3): 590-600    DOI: 10.11720/wtyht.2021.1533
  地质调查 本期目录 | 过刊浏览 | 高级检索 |
安徽铜陵—繁昌地区深部成岩成矿作用探讨——来自综合地球物理探测的制约
王云云(), 兰学毅(), 郭冬, 张莎莎, 丁文祥, 陶龙, 张慧杰, 张媛媛, 叶林, 尤淼
安徽省勘查技术院,安徽 合肥 230001
Diagenesis and mineralization in Tongling and Fanchang areas, Anhui Province: Constrains from the integrated geophysical exploration study
WANG Yun-Yun(), LAN Xue-Yi(), GUO Dong, ZHANG Sha-Sha, DING Wen-Xiang, TAO Long, ZHANG Hui-Jie, ZHANG Yuan-Yuan, YE Lin, YOU Miao
Geological Exploration Technology Institute of Anhui Province, Hefei 230001,China
全文: PDF(3654 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

长江中下游成矿带断凹区深部是否发育类似断隆区的铜金矿化引起了广泛关注。本文基于穿过铜陵断隆区和繁昌断凹区的地球物理剖面,利用重磁电震综合地球物理探测方法,厘定了铜陵和繁昌地区深部地质结构、控岩控矿构造和岩浆系统的空间分布形态,对比分析表明两地区深部岩体的岩性、侵入高度和范围明显不同,繁昌地区深部岩体较铜陵岩体偏酸性,且侵位深度浅。断裂的作用也明显不同,铜陵地区的断裂仅起到控制岩体浅部定位的作用,而繁昌盆地边界断裂则是盆地内岩浆上升的通道。同时铜陵地区岩体具有“一母多胎”的特征,衍生出来自同一岩浆房的多个岩枝或岩株,这直接表明了铜陵地区不同类型的岩浆岩为同一岩浆源区演化的产物,不同的演化程度可能是导致它们矿化差异的原因之一。本次研究运用综合地球物理探测方法探讨了铜陵和繁昌地区成岩成矿作用差异,从地球物理的角度解释了为何繁昌断凹区成矿特点不同于铜陵断隆区和繁昌盆地深部不存在“第二个铜陵”的原因,进一步深化了对长江中下游成矿带铜铁成矿作用规律的认识,为今后的找矿勘探提供了理论支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王云云
兰学毅
郭冬
张莎莎
丁文祥
陶龙
张慧杰
张媛媛
叶林
尤淼
关键词 铜陵断隆区繁昌断凹区综合地球物理探测控岩控矿构造深部地质结构    
Abstract

In the Middle-Lower Yangtze River metallogenic belt, the possibility of the development of copper-gold mineralization similar to things of the fault-uplift area in the depth of volcanic basin has attracted extensive attention. Based on the geophysical profile through the Tongling fault-uplift area and Fanchang volcanic basin and using integrated geophysical exploration methods, the authors identified the deep geological structure, rock and ore-controlling structure and the distribution of intrusions. The comparative study shows that the lithology, height and distribution of intrusions are different in Tongling and Fanchang area, and the intrusions in Fanchang is more felsic and shallow than those in Tongling. The faults in Tongling area only control the shallow location of intrusions, while the boundary faults in Fanchang basin are the channels for magma rising. The intrusion in Tongling area is characterized by "one mother and multiple offspring" and different intrusive branches or strains derived from the same magma chamber, which directly proves that different types of intrusive rocks in Tongling area are the products of the evolution of the same magma source region, and different degrees of evolution may be one of the reasons for their different kinds of mineralization. In this study, the authors used integrated geophysical exploration methods to discuss the difference of diagenesis and mineralization between Tongling fault-uplift area and Fanchang volcanic basin and explain the reason why only small iron mineralization exists in Fanchang region while large copper (-gold) deposit occurs in Tongling region. In addition, large-scale intrusion of granitic magma in the depth of Fanchang region indicates that there is no "second Tongling" in the depth of the Fanchang volcanic basin. These results further deepen the understanding of the regularity of copper and iron mineralization in the Middle and Lower Yangtze River metallogenic belt and provide theoretical support for ore prospecting and exploration in the future.

Key wordsTongling fault-uplift area    Fanchang volcanic basin    integrated geophysical exploration    rock and ore-controlling structure    deep geological structure
收稿日期: 2020-11-23      修回日期: 2021-01-21      出版日期: 2021-06-20
ZTFLH:  P631  
基金资助:安徽省自然科学基金青年项目(2008085QD177);安徽省公益性地质项目“南陵—宣城矿集区三维综合地球物理探测”(2018-g-1-4)
通讯作者: 兰学毅
作者简介: 王云云(1987-),女,2013年毕业于合肥工业大学,工程师,主要从事物探与地质找矿工作。Email: kcjsywyy@126.com
引用本文:   
王云云, 兰学毅, 郭冬, 张莎莎, 丁文祥, 陶龙, 张慧杰, 张媛媛, 叶林, 尤淼. 安徽铜陵—繁昌地区深部成岩成矿作用探讨——来自综合地球物理探测的制约[J]. 物探与化探, 2021, 45(3): 590-600.
WANG Yun-Yun, LAN Xue-Yi, GUO Dong, ZHANG Sha-Sha, DING Wen-Xiang, TAO Long, ZHANG Hui-Jie, ZHANG Yuan-Yuan, YE Lin, YOU Miao. Diagenesis and mineralization in Tongling and Fanchang areas, Anhui Province: Constrains from the integrated geophysical exploration study. Geophysical and Geochemical Exploration, 2021, 45(3): 590-600.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1533      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I3/590
Fig.1  安徽铜陵隆起区东部—繁昌盆地地质简图
1—第四系;2—白垩系;3—三叠系;4—二叠系;5—石炭系;6—泥盆系;7—志留系;8—火山岩;9—闪长岩;10—花岗岩;11—粗面安山玢岩;12—花岗斑岩;13—正长斑岩;14—闪长斑岩脉;15—辉绿斑岩脉;16—断层;17—推断主要断裂;18—廊带1线及MT剖面位置;19—收集的地震剖面位置
地层 岩性 厚度/m 密度/
(g·cm-3)
磁化率/
(10-6 SI)
电阻率平均值/
(Ω·m)
N+Q 黏土、粉质黏土 <100 1.76 0 100~101
K2c 砾岩、砂岩、粉砂岩 <5000 1.88 101~102
K1k 凝灰岩、粉砂岩、玄武岩夹页岩、流纹岩、角砾岩 <1288 2.54 101~102
K1c 凝灰角砾岩、粗面岩 <90 2.52
K1z 流纹岩、凝灰岩、角砾凝灰岩、火山碎屑岩 <2167 2.50
T2 粉砂岩、粉砂质页岩、泥岩夹石英砂岩 175~405 2.62 102~103
T1 白云岩、灰岩、泥灰岩 <576 2.71 103~106
P2-3 硅质页岩、页岩、炭质页岩 <267 2.63 102~104
C-P1 灰岩、白云岩 <799 2.69 103~106
D-S1g 粉砂质泥岩、石英粉砂岩、石英砂岩、中厚层细砂岩、粉砂岩及页岩互层,夹炭质泥岩 <2995 2.7 101~103
O-$\in$ 灰岩 2.72 0 103~106
γ 花岗岩 2.65 980~2000 102~104
γδ 花岗闪长岩 2.70 2600~4100
γπ 花岗斑岩 2.66 980~2000
δο 石英闪长岩 2.73 3500~5800 103~106
ηδο 石英二长闪长岩 2.68 400
Table 1  铜陵—繁昌地区岩石物性参数
Fig.2  铜陵隆起区东部—繁昌盆地布格重力异常(a)和航磁化极异常(b)
Fig.3  铜陵隆起区东部—繁昌盆地TL11-05线反射地震偏移剖面(据吕庆田等,2012修改)[24]
1—主要断裂;2—断裂;3—白垩系盆地底界;4—正断层;5—逆断层;6—盖层与基底之间滑脱面;7—中、下地壳之间滑脱面;Pt—元古宇基底地层;Pz—古生代地层;K-N—白垩-新近系
Fig.4  铜陵隆起区东部—繁昌盆地廊带1线地质—地球物理综合模型
1—第四系;2—白垩系上统赤山组;3—白垩系下统蝌蚪山组;4—白垩系下统赤沙组;5—白垩系下统中分村组;6—三叠系;7—二叠系中上统;8—石炭系—二叠系下统;9—泥盆系—志留系下统高加边组;10—奥陶系—寒武系;11—花岗闪长岩;12—花岗岩;13—花岗斑岩;14—花岗闪长斑岩;15—推断高密度体;16—逆断层;17—正断层
[1] 赵文津. 长江中下游金属矿找矿前景与找矿方法[J]. 中国地质, 2008, 35(5):771-802.
[1] Zhao W J. Ore prospects and ore exploration methods for metal deposits in the middle and lower Yangtze river valley[J]. Geology of China, 2008, 35(5):771-802.
[2] 常印佛, 刘湘培, 吴昌言. 长江中下游铜铁成矿带[M]. 北京: 地质出版社, 1991.
[2] Chang Y F, Liu X P, Wu C Y. The copper-iron belt of the lower and middle reaches of the Changjiang river[M]. Beijing: Geological Publishing House, 1991.
[3] 宁芜研究项目编写小组. 宁芜玢岩铁矿[M]. 北京: 地质出版社, 1978.
[3] Ningwu Project Group. The porphyrite iron deposit of Ningwu[M]. Beijing: Geological Publishing House, 1978.
[4] 周涛发, 范裕, 袁峰, 等. 长江中下游成矿带火山岩盆地的成岩成矿作用[J]. 地质学报, 2011, 85(5):712-730.
[4] Zhou T F, Fan Y, Yuan F, et al. Petrogensis and metallogeny study of the volcanic basins in the middle and lower Yangtze Metallogenic Belt[J]. Acta Geologica Sinica, 2011, 85(5):712-730.
[5] 楼亚儿. 安徽繁昌中生代侵入岩的特征和成因研究[D]. 北京:中国地质大学(北京), 2005.
[5] Lou Y E. Characteristics and petrogenesis of the mesozoic intrusive rocks in Fanchang, Anhui province[D]. Beijing: China University of Geosciences(Beijing), 2005.
[6] 钟国雄, 周涛发, 袁峰, 等. 安徽铜陵姚家岭锌金多金属矿床成岩成矿年代学研究[J]. 岩石学报, 2014, 30(4):1075-1086.
[6] Zhong G X, Zhou T F, Yuan F, et al. LA-ICPMS U-Pb zircon age and molybdenite Re-Os dating of Yaojialing large zinc-gold polymetallic deposit, Tongling, Anhui province, China[J]. Acta Petrologica Sinica, 2014, 30(4):1075-1086.
[7] 黄贻梅. 安徽省繁昌盆地成岩作用及桃冲铁矿成矿作用研究[D]. 合肥:合肥工业大学, 2010.
[7] Huang Y M. The diagenesis of Fanchang basin and ore mineralization of Taochong, Anhui province, China[D]. Hefei: Hefei University of Technology, 2010.
[8] 许卫, 丁希国, 吴礼彬, 等. 安徽铜陵隆起北缘的成矿作用特征及找矿潜力[J]. 安徽地质, 2011, 21(2):138-142.
[8] Xu W, Ding X G, Wu L B, et al. Meatllogenic features and ore prospecting potential at the north rim of the Tongling uplift, Anhui[J]. Geology of Anhui, 2011, 21(2):138-142.
[9] 唐永成, 吴言昌, 储国正. 安徽沿江地区铜金多金属矿床地质[M]. 北京: 地质出版社, 1990.
[9] Tang Y C, Wu Y C, Chu G Z. The geology of copper-gold polymetallic deposit in Yanjiang area of Anhui province[M]. Beijing: Geological Publishing House, 1990.
[10] 吕庆田, 杨竹森, 严加永. 长江中下游深部成矿潜力、找矿思路与初步尝试——以铜陵矿集区为实例[J]. 地质学报, 2007, 81(7):865-881.
[10] Lyu Q T, Yang Z S, Yan J Y. The metallogenic potential, prospecting idea and primary attempt in depth of the ore belt of the middle and lower reach of the Yangtze river—A case study of Tongling ore district[J]. Acta Geologica Sinica, 2007, 81(7):865-881.
[11] 常印佛, 董树文, 黄德志. 论中—下扬子“一盖多底”格局与演化[J]. 火山地质与矿产, 1996, 17(1-2):1-14.
[11] Chang Y F, Dong S W, Huang D Z. On tectonics of “poly-basement with one cover” in middle-lower Yangtze craton, China[J]. Volcanology & Mineral Resources, 1996, 17(1-2):1-14.
[12] 真允庆, 丁梅花, 戴宝章, 等. 长江中下游成矿带深部找矿思路探讨[J]. 地质找矿论丛, 2009, 24(3):179-187.
[12] Zhen Y Q, Ding M H, Dai B Z. Discussion on deep ore prospecting in the middle and lower reaches of Yangtze river mineralization belt[J]. Contributions to Geology and Mineral Resources Research, 2009, 24(3):179-187.
[13] 谢杰, 张冠华, 吴文龙, 等. 安徽省庐江县黄屯铜金矿床地质特征及成因探讨[J]. 安徽地质, 2019, 29(4):254-256.
[13] Xie J, Zhang G H, Wu W L, et al. Discussion on geological characteristics and genesis of the Huangtun copper and gold deposit in Lujiang county, Anhui Province[J]. Geology of Anhui, 2019, 29(4):254-256.
[14] 吕庆田, 孟贵祥, 严加永, 等. 长江中下游成矿带铁—铜成矿系统结构的地球物理探测:综合分析[J]. 地学前缘, 2020, 27(2):232-253.
[14] Lyu Q T, Meng G X, Yan J Y, et al. The geophysical exploration mesozoic iron-copper mineral system in the middle and lower reaches of the Yangtza river metallogenic belt: A synjournal[J]. Earth Science Frontiers, 2020, 27(2):232-253.
[15] 董树文, 项怀顺, 高锐, 等. 长江中下游庐江—枞阳火山岩矿集区深部结构与成矿作用[J]. 岩石学报, 2010, 26(9):2529-2542.
[15] Dong S W, Xiang H S, Gao R, et al. Deep structure and ore formation within Lujiang-Zongyang volcanic ore concentrated area in Middle to lower reaches of Yangtze river[J]. Acta Petrologica Sinica, 2010, 26(9):2529-2542.
[16] 黄宁, 陈国光, 张景, 等. 综合物探方法在多金属矿找矿靶区预测中的应用[J]. 物探与化探, 2016, 40(5):929-934.
[16] Huang N, Chen G G, Zhang J, et al. Application and study of comprehensive geophysical methodsin prospecting target of iron and copper poly-metallic ore[J]. Geophysical and Geochemical Exploration, 2016, 40(5):929-934.
[17] Roy B, Clowes R M. Seismic and potential-field imaging of the Guich on Creek batholith, Brithsh Columia, Canada, to delineate structures hosting porphyry copper deposits[J]. Geophysics, 2000, 65(5):1418-1434.
doi: 10.1190/1.1444831
[18] 邵陆森, 刘振东, 吕庆田, 等. 安徽贵池矿集区深部精细结构——来自综合地球物理探测结果的认识[J]. 地球物理学报, 2015, 58(12):4490-4504.
[18] Shao L S, Liu Z D, Lyu Q T, et al. Deep fine structure of Guichi Ore concentrated area: The understanding of the integrated geophysical detection results[J]. Chinese Journal of Geophysics, 2015, 58(12):4490-4504.
[19] 吴才来, 陈松永, 史仁灯, 等. 铜陵中生代中酸性侵人岩特征及成因[J]. 地球学报, 2003, 24(1):41-48.
[19] Wu C L, Chen S Y, Shi R D, et al. Origin and features of the mesozoic intermediate-acid intrusive in the Tongling area, Anhui, China[J]. Acta Geoscientica Sinica, 2003, 24(1):41-48.
[20] 宋传中, 蒋其胜, 李加好, 等. 安徽繁昌盆地南缘构造特征与控矿规律研究[J]. 岩石学报, 2012, 28(10):3197-3208.
[20] Song C Z, Jiang Q S, Li J H, et al. Relationship between structures and their controls to ores in the southern margin of Fanchang basin in Anhui Province[J]. Acta Petrologica Sinica, 28(10):3197-3208.
[21] Zhou T F, Wang S W, Fan Y, et al. A review of the intracontinental porphyry deposits in the middle-lower Yangtze river valley metallogenic belt, Eastern China[J]. Ore Geology Reviews, 2015, 65:433-456.
doi: 10.1016/j.oregeorev.2014.10.002
[22] 范裕, 常印佛, 周涛发, 等. 中国矿产地质志·长江中下游卷[M]. 北京: 地质出版社, 2019.
[22] Fan Y, Chang Y F, Zhou T F, et al. The volume of the middle-lower Yangtze river metallogenicbelt, geology of mineral resources of China[M]. Beijing: Geological Publishing House, 2019.
[23] 郭冬, 刘玉泉, 谭静, 等. 南陵—宣城矿集区三维综合地球物理探测野外工作总结[R]. 合肥:安徽省勘查技术院, 2020,21-27.
[23] Guo D, Liu Y Q, Tan J, et al. Summary of field work of three-dimensional comprehensive geophysical exploration in Nanling-Xuancheng mining area[R]. Hefei: Geological Exploration Technology Institute of Anhui Province, 2020, 21-27.
[24] Lyu Q T, Tang J T, Liu Z D. Crustal structure of Tongling ore district and its control on mineral genesis, as revealed by integrated geophysical profiles[C]// Abstractin 34th IGC, Brisbane, Australia, 2012, 5-10.
[25] 兰学毅, 杜建国, 严加永, 等. 基于先验信息约束的重磁三维交互反演建模技术——以铜陵矿集区为例[J]. 地球物理学报, 2015, 58(12):4436-4449.
[25] Lan X Y, Du J G, Yan J Y, et al. 3D gravity and magnetic interactive inversion modeling based on prior information: A case study of the Tongling ore concentration area[J]. Chinese J. Geophys., 2015, 58(12):4436-4449.
[26] 丁文祥, 袁峰, 李晓辉, 等. 基于重磁联合反演的宁芜盆地钟姑矿田深部地质结构解析及成矿预测[J]. 地质学报, 2018, 92(11):2301-2317.
[26] Ding W X, Yuan F, Li X H, et al. Deep geological structure analysis and metallogenic prediction of Zhonggu ore field in the south section of Ningwu basin based on gravity and magnetic joint inversion[J]. Acta Geologica Sinica, 2018, 92(11):2301-2317.
[27] 刘建利, 李西周, 张全. 重、磁、电联合反演在银额盆地定量解释中的应用[J]. 物探与化探, 2013, 37(5):853-858.
[27] Liu J L, Li X Z, Zhang Q. The application of gravity-magnetic-magnetotelluric joint inversion to the quantitative interpretation of Yin'E basin[J]. Geophysical and Geochemical Exploration, 2013, 37(5):853-858.
[28] 吕庆田, 侯增谦, 赵金花, 等. 深地震反射剖面揭示的铜陵矿集区复杂地壳结构形态[J]. 中国科学(D辑), 2003, 33(5):442-449.
[28] Lyu Q T, Hou Z Q, Zhao J H, et al. The deep seismic reflection section reveals the complex crustal structure in Tongling ore area[J]. Science in China(Series D), 2003, 33(5):442-449.
[29] 吕庆田, 董树文, 汤井田, 等. 多尺度综合地球物理探测:揭示成矿系统、助力深部找矿——长江中下游深部探测(SinoProbe-03)进展[J]. 地球物理学报, 2015, 58(12):4319-4343.
[29] Lyu Q T, Dong S W, Tang J T, et al. Multi-scale and integrated geophysical data revealing mineral systems and exploring for mineral deposits at depth: A synjournal from SinoProbe-03[J]. Chinese Journal of Geophysics, 2015, 58(12):4319-4343.
[30] 严加永, 吕庆田, 陈明春, 等. 基于重磁场多尺度边缘检测的地质构造信息识别与提取——以铜陵矿集区为例[J]. 地球物理学报, 2015, 58(12):4450-4464.
[30] Yan J Y, Lyu Q T, Chen C M, et al. Indentification and extraction of geological structure information based on multi-scale edge detection of gravity and magnetic fields: An example of the Tongling ore concentration area[J]. Chinese Journal of Geophysics, 2015, 58(12):4450-4464.
[31] 闫峻, 彭戈, 刘建敏, 等. 下扬子繁昌地区花岗岩成因:锆石年代学和Hf-O同位素制约[J]. 岩石学报, 2012, 28(10):3209-3227.
[31] Yan J, Peng G, Liu J M, et al. Petrogenesis of granites from fanchang distict,the lower Yangtze region: Ziron geochronology and Hf-O isotopes constrains[J]. Acta Petrologica Sinica, 2012, 28(10):3209-3227.
[32] Wang S W, Zhou T F, Yuan F, et al. Geochemical characteristics of the Shujiadian Cu deposit related intrusion in Tongling: Petrogenesis and implications for the formation of porphyry Cu systems in the middle-lower Yangtze river valley metallogenic belt, eastern China[J]. Lithos, 2016, 252:185-199.
[33] 杜建国, 常丹燕. 长江中下游成矿带深部铁矿找矿的思路[J]. 地质学报, 2011, 85(5):687-698.
[33] Du J G, Chang D Y. Consideration on the deep-iron ore deposits prospecting in the middle-lower Yangtze metallogenic belt[J]. Acta Geologica Sinica, 2011, 85(5):687-698.
[1] 史朝洋, 高维强, 张利明, 张林, 冯旭亮, 何滔, 郑有伟. 唐昭陵韦贵妃墓综合地球物理探测研究[J]. 物探与化探, 2021, 45(6): 1617-1624.
[2] 王峰, 吴志春, 陈凯, 郭福生, 应阳根, 罗建群, 侯曼青. CSAMT法在深部地质结构探测中的应用——以相山铀矿田邹家山地区为例[J]. 物探与化探, 2016, 40(1): 17-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com