鄂西典型高硒区土壤和农作物硒含量特征及其影响因素研究
Characteristics and influencing factors of selenium content in soils and crops in typical high-selenium-content regions of western Hubei Province, China
通讯作者: 李明龙(1988-),男,湖北枣阳人,高级工程师,博士,主要从事沉积学及硒的环境地球化学研究工作。Email:leeminglong@126.com
第一作者:
责任编辑: 蒋实
收稿日期: 2023-11-4 修回日期: 2024-05-11
基金资助: |
|
Received: 2023-11-4 Revised: 2024-05-11
掌握硒在土壤和农作物中的分布规律对于富硒产业发展至关重要。湖北省恩施市分布大量富硒土壤,为发展当地富硒农业,本文以鄂西典型高硒区恩施新塘乡为研究区,通过对2 469件土壤样和玉米、土豆、水稻、萝卜、白菜、茶叶6种共237件农作物样的硒地球化学数据进行整理分析,系统地总结出该区土壤硒分布规律及影响农作物硒含量的因素。结果表明:新塘乡表层土壤硒含量范围为(0.14~25.74)×10-6,背景值为0.81×10-6,是全国土壤硒背景值的3.7倍,且达到富硒土壤标准的土壤面积占总面积的86.23%,存在2条NEE向的富硒带;土壤硒空间分布与成土母质密切相关,成土母质为二叠系黑色岩系的土壤中硒含量明显较高,富集系数达到3.74;高硒区水稻、萝卜、白菜富硒率均超过65%,除土豆外的农作物硒含量与对应根系土硒含量均呈正相关,其中茶叶(P<0.01,R=0.84)相关性最高,说明富硒作物硒含量与根系土硒含量关系密切;成土母质为二叠系黑色岩系类及三叠系碳酸盐岩类的耕地区农作物硒生物富集系数较高,成土母质为二叠系黑色岩系的农作物中硒平均值最高,说明成土母质对农作物硒含量影响较大。
关键词:
Understanding the distribution patterns of selenium in soils and crops is critical to developing selenium-rich industries. Enshi City in Hubei Province is known for its extensive selenium-rich soils, establishing this city as a promising area for selenium-rich agriculture. This study investigated Xintang Township in Enshi. Based on the organization and analysis of the geochemical data of 2 469 soil samples and 237 crop samples of maize, potatoes, rice, radish, cabbage, and tea, this study offered a systematic summary of the selenium distribution in soils and factors influencing selenium content in crops in the study area. The results indicate that the topsoils exhibit selenium content ranging from 0.14×10-6 to 25.74×10-6, with a background value of 0.81×10-6, which is 3.7 times the national background of selenium content in soils. Selenium-rich soils cover 86.23% of the total area of the study area, and two NEE-directed selenium-rich belts are found. The spatial distribution of selenium in soils is closely related to soil-forming parent materials. Soils with Permian black rock series as parent materials exhibit notably higher selenium content, with an enrichment coefficient of 3.74. In high-selenium-content areas, rice, radish, and cabbage exhibit selenium enrichment rates exceeding 65%. Except for potatoes, crops display positive correlations between their selenium content and the selenium content in their root soils, with tea showing the highest correlation (P<0.01, R=0.84). This suggests a close relationship between the selenium content in crops and their root soils. The crops in cultivated areas with Permian black rock series and Triassic carbonate rock series as soil-forming parent materials exhibit high bioconcentration factors of selenium, with soils and crops with Permian black rock series as soil-forming parent materials presenting the highest average selenium content. This highlights the significant impacts of soil-forming parent materials on crop selenium content.
Keywords:
本文引用格式
秦浩林, 李明龙, 郑德顺, 孙风波, 张凯.
QIN Hao-Lin, LI Ming-Long, ZHENG De-Shun, SUN Feng-Bo, ZHANG Kai.
0 引言
硒是人体必需的微量元素[1],我国是一个严重缺硒的国家,低硒土壤面积占土壤总面积的72%[2]。补硒是防治克山病和大骨节病的关键,此外,硒还有抗癌、增强免疫力、拮抗重金属等作用[3⇓⇓-6]。人体摄入硒主要依靠食品,特别是农作物中所含的硒,而农作物中的硒主要来自土壤[7-8],硒在土壤—农作物的地球化学循环模式是重要的科学问题[9],开展表层土壤中硒的分布规律及农作物硒地球化学研究是硒开发及高效利用的前提。不同地区土壤和农作物中硒的分布及影响因素有所不同,如郝栗涛等[10]对陕西省岚皋县土壤与农作物展开研究,发现土壤硒含量与地层硒含量密切相关,尤其是黑色岩系,且农作物中的硒主要来源于土壤,最终来源于基岩;周文辉等[11]分析了宁夏固原原州区土壤及农作物硒地球化学特征,认为农作物硒含量主要受根系土中Se、S、pH和有机质含量等影响。
由于目前恩施市新塘乡典型高硒区表层土壤和农作物硒的分布规律和影响因素研究不够深入,因此本文选定湖北省恩施市新塘乡表层土壤和农作物为研究对象,在恩施市土地质量地球化学评价暨土壤硒资源普查项目所获数据基础上,研究富硒土壤分布规律及农作物硒含量特征,探讨研究区农作物硒含量的影响因素,以期为当地富硒农业发展提供理论参考。
1 研究区概况
恩施市坐落于湖北省西南部山区,地理坐标位于东经109°05'14″~109°52'35″、北纬30°03'44″~30°32'57″之间,共辖新塘乡、舞阳坝街道、沐抚办事处等 17 个乡镇和街道办事处。新塘乡研究区位于恩施市东南部,全乡面积420 km2,共辖新塘居委会、保水溪村等13个村落及居委会(图1a)。
图1
新塘乡研究区地层出露较为丰富,自下而上出露有志留系罗惹坪组(S1lr)、纱帽组(S1-2s),泥盆系云台观组(D2y)、黄家蹬组(D3h)、写经寺组(D3C1x)并层(简称D2y-D3C1x),石炭系大浦组(C1-2d)、黄龙组(C2h)并层(简称C2d+h), 二叠系梁山组(P1l)、栖霞组(P1q)并层(简称P1l+q),茅口组(P1m)、孤峰组(P1g)并层(简称P1m+g),龙潭组(P2l)、下窑组(P2x)、大隆组(P2d)并层(简称P2l-d),三叠系大冶组(T1d)[18](图1b)。成土母质主要为碳酸盐岩类风化物、黑色岩系风化物、碎屑沉积岩类风化物。主要大宗农作物有玉米、土豆、水稻、萝卜、白菜、茶叶等。
2 样品采集及分析处理
2.1 样品采集与处理
本研究土壤数据基于湖北省地质局第二地质大队于2016~2022年在恩施市新塘乡进行的土壤地球化学调查,土壤样品按照1:5万采样网度和采样密度,采用图斑结合网格法布样,尽量布置在有代表性的田块,平均布样密度为6点/km2,采用“五点采样法”采集0~20 cm表层土壤,采样时避开人为污染地段,共采集土壤样品2 469件,每件样品由4个子样等量混合均匀,质量不低于1 000 g,风干后过20目筛(对应土壤粒径约为0.83 mm),称取300 g样品送样化验,剩余样品装瓶放入样品室保存。
大宗农作物的选择应满足富硒农产品开发、农产品影响力高、种植面积广的条件,采集方法为在农产品收获期内采集农作物样品未处理的可食用、籽实部分,其中粮油类作物有玉米籽粒样70件、土豆块茎样48件、水稻籽粒样25件,蔬菜类作物有萝卜块根茎样25件、白菜叶样31件,茶叶类作物有鲜茶叶样38件,共237件,部分样品分布见图1a。为保证样品代表性和测试所需样品量,土豆、萝卜、白菜等含水量高的作物样品,野外新鲜样品采集量不应少于2 000 g。农作物样品采集后及时装入保鲜袋中并做好标记,带回室内后用蒸馏水洗净,在干燥通风处晾干表面水分,立即送实验室处理分析,蔬菜类鲜样打浆处理后消解测定。采集农作物样品的同时配套采集其生长区根系土1 000 g,根系土采集及处理方法同表层土壤样品。
2.2 样品分析与质量控制
样品分析由湖北省地质局第二地质大队化学分析研究室承担。土壤样品经混匀后,缩分出80 g样品,用无污染行星球磨机粉碎至200目,剩余样品留作副样原装保存。利用原子荧光光谱法(AFS)对Se元素进行测试,检出限为0.01×10-6,测量条件为:负高压280 V,灯电流70 mA,原子化器温度200 ℃,土壤样品按照《多目标区域地球化学调查规范(1:250 000)》(DZ T 0258—2014)[19]中的有关规定,从16个土壤国家一级标准物质中选用GSS1~GSS12共12个标准物质,用选定分析方法对每一个标准物质进行12次分析检验。方法的准确度和精密度均符合或优于要求。
依据《生态地球化学评价样品分析技术要求(试行)》(DD2005-03)[20],农作物样品筛选80 g,在85 ℃烘箱烘烤20 min,然后冷却至65 ℃左右,以烘干水分,采用微波分解法对样品进行分解。具体方法为:取2 g样品于锥形瓶中,加入20 mL HNO3-HClO4(4+1)混合酸混匀后加盖,放置24 h后在电热板上加热消解至清澈无色溶液,冷却后加入10 mL HCl,继续加热至溶液为黄色,冷却后利用AFS法定容分析,检出限为0.01×10-6。
2.3 数据处理
变异系数(CV)反映数据的离散性,变异系数越大,代表数据分布越分散。公式如下:
式中:μ为数据平均值;σ为标准差。
土壤硒背景值采用剔除均值±3倍标准差以外的数据的均值,可最大限度避免极值对背景值数据的影响。富集系数(EF)由Zoller等[21]在研究南极大气时提出,在本文中主要反映表层土壤硒相对于成土母质含量的富集程度,是评价富硒土壤的重要指标之一。EF值越高代表母质富硒能力越强,其中母质层数据来源于湖北省第二地质队恩施土壤硒资源普查一期项目。公式如下:
式中:CSe、BSe分别代表表层土壤Se含量、母质层土壤硒含量;Cref、Bref分别代表表层土壤、母质层土壤参比元素含量。
本研究采用MapGIS 6.7软件结合Section 2021软件进行1:10万成土母质图、采样点分布图及硒含量分布图的绘制及分析,利用Origin 2021软件进行农作物硒含量与根系土硒含量相关性图的绘制,利用IBM SPSS Statistics 26 软件对农作物硒含量和根系土壤、成土母质硒含量做相关性分析,采用Excel 软件进行硒含量平均值、标准差、CV值、背景值、EF值统计等。
3 实验结果
3.1 新塘乡表层土壤硒含量特征
表1 新塘乡土壤Se与其他地区Se背景值的比较
Table 1
图2
图2
新塘乡表层土壤硒含量分布(a)及等级(b)
Fig.2
The distribution map (a) and grade map (b) of selenium content in surface soil of Xintang Township
表2 土壤硒等级划分
Table 2
指标 | 缺乏 | 边缘 | 适量 | 丰富 | 极丰富 | 富硒标准 |
---|---|---|---|---|---|---|
标准值/ 10-6 | ≤0.125 | 0. 125~ 0.175 | 0.175~ 0.40 | 0.40~ 3.00 | ≥3.00 | ≥0.45 |
样品数量 | 0 | 5 | 225 | 1964 | 275 | 2129 |
占比/% | 0 | 0.20 | 9.11 | 79.55 | 11.14 | 86.23 |
结果显示,新塘乡超过90%的土壤硒含量集中在(0.40~3.00)×10-6之间,达到富硒土壤标准的土壤面积占新塘乡总面积的比例高达86.23%,大部分表层土壤达到富硒土壤标准。研究区整体硒含量中间高四周低,且硒含量普遍偏高的土壤地层岩性多为黑色岩系,硒高值区主要分布于两条NEE向的富硒带,北部富硒带包括卯山村、龚家坪村、保水溪村、新塘居委会、下塘坝村等区域,中部偏南富硒带包括木栗园村、双河居委会、下坝村西部,其中,龚家坪村、保水溪村及木栗园村具有大片硒极丰富区。硒缺乏区主要分布于卯山村北部及南部、下塘坝村中部及西部、前坪村西部及南部、河溪村中部、横栏村中部。因此,对高硒区尤其是龚家坪村、保水溪村及木栗园村等地,发展富硒农业有着得天独厚的地理优势,进行土壤及农作物硒含量研究具有十分重要的意义。
3.2 新塘乡表层土壤硒分布规律
相关学者认为,影响表层土壤硒含量的因素有成土母质、土壤类型、土地利用现状等,其中最主要的因素是成土母质[32-33],本文分析了影响研究区土壤硒含量的成土母质因素。根据“金土地”工程对恩施市的地质背景及岩性的研究,恩施市新塘乡主要成土母质为碳酸盐岩、碎屑沉积岩及以炭质页岩、含炭硅质岩为主的黑色岩系。本文截取新塘乡的地质背景图,结合岩性数据,将研究区表层土壤区域按成土母质和地质年代分为3类,分别是以 S1lr、S1-2s、D2y-D3C1x为主要地层的碎屑沉积岩类风化区;以C2d+h、T1d为主要地层的碳酸盐岩类风化区;以P1l+q 、P1m+g、P2l-d为主要地层的黑色岩系风化区。本文分析了不同表层土壤区硒含量的范围、均值,并结合“金土地”工程中成土母质硒含量的数据,利用公式(2)计算表层土壤富集系数EF值(表3),并利用MapGIS将成土母质图与硒含量等级图极富硒区域叠合分析,如图3所示。
表3 不同地质背景区表层土壤硒含量
Table 3
成土母质 | 硒含量/10-6 | 总样 品数 | EF值 | |
---|---|---|---|---|
范围 | 平均值 | |||
S1lr碎屑沉积岩类风化区 | 0.18~1.04 | 0.47 | 65 | 0.55 |
S1-2s碎屑沉积岩类风化区 | 0.24~1.10 | 0.51 | 178 | 0.61 |
D2y-D3C1x 碎屑沉积岩类 风化区 | 0.19~2.80 | 0.71 | 431 | 0.84 |
C2d+h碳酸盐岩类风化区 | 0.26~3.54 | 0.74 | 133 | 0.94 |
P1l+q黑色岩系风化区 | 0.16~9.41 | 0.85 | 224 | 1.19 |
P1m+g黑色岩系风化区 | 0.33~25.74 | 2.19 | 448 | 3.12 |
P2l-d黑色岩系风化区 | 0.20~20.70 | 2.82 | 419 | 3.74 |
T1d碳酸盐岩类风化区 | 0.14~23.23 | 1.44 | 571 | 1.71 |
图3
图3
成土母质与硒含量等级叠合分析
Fig.3
Composite analysis diagram of soil parent material and selenium content grade
如表3所示, 综合考虑表层土壤不同成土母质硒含量范围与平均值,发现其大小顺序为:P2l-d>P1m+g>T1d>P1l+q>C2d+h>D2y-D3C1x>S1-2s>S1lr,不同母质发育的土壤硒含量具有极显著的差异。结合图3和表3可看出,极富硒区域与黑色岩系风化区套合度较好,富硒区多发育于P1m+g黑色岩系风化区地层,富集系数达3.12,P2l-d黑色岩系风化区地层,富集系数达3.74。硒缺乏区多发育于S1lr碎屑沉积岩类风化区地层、S1-2s碎屑沉积岩类风化区地层、D2y-D3C1x 碎屑沉积岩类风化区地层,富集系数均未超过0.9,最低值为0.55。碳酸盐岩类风化区硒含量较为富集,但T1d碳酸盐岩类风化区在下塘坝村出现大片低值,可能与地形地貌等其他因素有关。此分布特征与前人对陕西省岚皋县、宁夏固原原州区的富硒土壤分布特征研究有相似之处,其原因推测为:在地质史上,二叠系黑色岩系沉积时硒大量富集,硅质、炭质岩石硒元素含量相对较高,为硒元素提供了物质基础,且居民采集附近富硒炭质页岩中的石煤作为燃料,致使岩石风化过程加速,硒易被上覆残坡积土壤黏土矿物吸附形成大片富硒区域。
3.3 农作物硒含量特征
基于中华全国供销合作总社[34]颁发的《富硒农产品》(GH/T 1135—2017)和湖北省卫生健康委员会[35]颁发的《富有机硒食品硒含量要求》(DBS42/002—2022)中关于富硒农产品含量范围的规定,结合李明龙[18]对富硒农作物的分类研究,本文将玉米、土豆、水稻、萝卜、白菜、茶叶6种共237件大宗农作物样品硒含量数据分为3个等级(见表4),分别为一级(>0.15×10-6)、二级((0.075~0.15)×10-6)、三级(<0.075×10-6),其中粮油类作物玉米、土豆(干基)、水稻一级、二级达到富硒标准,划分为富硒农作物,三级划分为不富硒农作物;蔬菜类作物萝卜(干基)、白菜(干基)及茶叶类作物茶叶一级达到富硒标准,划分为富硒作物,二级、三级划分为不富硒农作物。本文从现有数据分析计算硒含量平均值、变异系数及富硒率(达到富硒标准的作物样本数与该作物总样本数的比值)见表4。
表4 新塘乡农作物硒含量统计
Table 4
作物 | 总样品数 | 样品数 | 硒含量/10-6 | CV/% | 富硒率/% | ||||
---|---|---|---|---|---|---|---|---|---|
一级 | 二级 | 三级 | 极差 | 平均值 | 标准差 | ||||
玉米 | 70 | 13 | 17 | 40 | 0.02~3.54 | 0.16 | 0.38 | 235 | 42.86 |
土豆 | 48 | 3 | 3 | 42 | 0.01~1.59 | 0.05 | 0.05 | 105 | 12.50 |
水稻 | 25 | 17 | 2 | 6 | 0.05~3.99 | 0.50 | 0.57 | 114 | 76.00 |
萝卜 | 38 | 25 | 10 | 3 | 0.06~3.85 | 0.41 | 0.79 | 193 | 65.79 |
白菜 | 31 | 21 | 6 | 4 | 0.05~3.74 | 1.42 | 1.78 | 125 | 67.74 |
茶叶 | 38 | 14 | 13 | 11 | 0.03~3.48 | 0.40 | 0.68 | 170 | 36.84 |
由表4可知,6种大宗农作物中水稻有大量样品处于一级标准,萝卜、白菜有较多样品达到一级标准,茶叶样本等级分布较为平均,另外玉米、土豆存在较多三级标准样品。分析富硒率可得,水稻、萝卜、白菜富硒率均大于65%,相对较高,水稻硒含量范围为(0.05~3.99)×10-6,平均值为0.50×10-6,富硒率为76.00%,富硒率最高;土豆硒含量范围为(0.01~1.59)×10-6,平均值为0.05×10-6,富硒率为12.50%,富硒率低,且存在异常值影响统计结果。由表4可知,上述6种农作物硒含量变化均较大,CV值全部超过100%,总体呈不均匀分布,本次研究富硒率相对较高(>65%)并且平均值达到富硒标准的农作物有水稻、萝卜、白菜,可以划分为富硒农作物,其中玉米、茶叶硒含量平均值大于富硒标准,富硒率在35%~45%之间,土豆达到富硒标准的样本较少,富硒率较低。
4 讨论
4.1 不同农作物与其根系土硒含量情况
为探究根系土与农作物硒含量的关系,绘制了研究区玉米、土豆、水稻、萝卜、白菜、茶叶样品的硒含量与其对应的根系土硒含量散点图,并统计了皮尔逊相关系数R(图4)。为了减小土壤硒含量对农作物吸收、富集硒的影响,进一步统计了不富硒土壤(≤0.45×10-6)和富硒土壤(>0.45×10-6)中硒含量与玉米、土豆的相关系数(R1 、R2)。
图4
图4
新塘乡农作物与根系土硒含量散点图
Fig.4
Scatter diagram of selenium content of crops and root soil in Xintang Township
据图4可见,玉米、土豆、水稻、萝卜、白菜、茶叶6种农作物与对应富硒根系土硒含量均呈一定的正相关性。其中茶叶相关性最高,相关系数R=0.84,在P<0.01级别相关性显著,呈极显著正相关,水稻(P<0.01,R=0.71)、玉米(P<0.01,R2=0.65)、萝卜(P<0.01,R=0.57)、白菜(P<0.01,R=0.57)等作物与根系土中硒的相关性较高,说明富硒根系土硒含量与茶叶、水稻、玉米、萝卜、白菜等农作物硒含量关系密切,硒含量高的作物多生长在富硒土壤,而土豆硒与根系土硒相关性最低(R2=0.09),基本不相关。另外,将低于富硒标准的根系土样本与对应玉米、土豆的样本加以分析,发现低硒区根系土硒含量与玉米硒含量相关性(R1=-0.13)以及土豆硒含量相关性(R1=0.28)均不明显,说明低硒区的土壤硒和玉米、土豆硒没有显著关系。以玉米为例,当土壤硒含量未达到富硒土壤标准时,农作物与其根系土硒含量相关性较弱,此时土壤硒含量的变化波动对玉米的硒含量影响不大,当土壤硒含量达到富硒土壤标准时,农作物与其根系土硒含量呈高度正相关,土壤富硒能力越高,越可能生长出富硒农作物。
4.2 不同成土母质区农作物硒含量特征
生物富集系数大,表明植物对硒吸收能力强,反之则吸收能力弱。本研究区成土母质可分为志留系碎屑沉积岩类(S)、泥盆系碎屑沉积岩类(D)、石炭系碳酸盐岩类(C)、二叠系黑色岩系类(P)、三叠系碳酸盐岩类(T)5类。统计玉米、土豆、水稻、萝卜、白菜、茶叶6种大宗农作物与其对应的根系土成土母质的硒含量关系,并采用生物富集系数CF来分析不同成土母质对作物硒吸收能力的差异性,结果如表5和图5所示。计算方法为首先计算玉米、土豆、水稻、萝卜、白菜、茶叶6种大宗农作物在每个采样点上的生物富集系数CF,再按5类成土母质进行分类,剔除极端异常值后,分别统计各成土母质区各类作物的区生物富集系数CF的平均值,据此对比不同作物硒吸收能力及成土母质类型的可能影响。
表5 不同地质年代成土母质中农作物生物富集系数
Table 5
农作物 | S | D | C | P | T |
---|---|---|---|---|---|
玉米 | 5.69 | 3.74 | 5.96 | 7.14 | 15.06 |
土豆 | 4.19 | 2.89 | 4.36 | 5.21 | 5.38 |
水稻 | 13.46 | 14.94 | 10.83 | 23.60 | 15.17 |
萝卜 | 18.95 | 14.10 | 21.74 | 36.60 | 60.04 |
白菜 | 23.68 | 17.86 | 19.23 | 55.88 | 83.34 |
茶叶 | 11.60 | 10.51 | 8.16 | 26.42 | 23.92 |
图5
图5
不同地质年代成土母质与农作物生物富集系数关系
Fig.5
The relationship between soil parent material and crop bioconcentration factor in different geological years
由表5、图5可知,研究区农作物生物富集系数与根系土成土母质关系较为密切,成土母质中的硒可能是对应生长区农作物中的硒的主要来源。玉米对硒有较强富集性,生物富集系数在不同地质年代成土母质的大小差距明显;土豆对硒富集能力极弱,不同地质背景区中土豆硒生物富集系数变化介于2%~6%之间,低于其他种类农作物;水稻对硒有较强富硒性,其生物富集系数在二叠系黑色岩系类成土母质区中最高,达到23.60%,在其他成土母质中分布均处于13%上下;萝卜、白菜这类蔬菜对硒的富集能力极强,且生物富集系数最高分别为60.04%、83.34%,高于其他农作物;茶叶对硒的富集能力也较强,生物富集系数最高达到了26.42%。富硒能力强的作物表现相似,成土母质为二叠系(P)、三叠系(T)的生物富集系数高,成土母质为志简系(S)、泥盆系(D)、石炭系(C)的生物富集系数相对较低。对于玉米、土豆、萝卜、白菜等农作物,不同成土母质区硒元素生物富集系数特征为:T>P>C、D、S;对于水稻、茶叶等农作物,不同成土母质区硒元素生物富集系数特征为:P>T>C、D、S。此结果与表层土壤和成土母质硒含量关系基本一致,并且均表现为P、T成土母质区的土壤和农作物硒含量高,S、D、C成土母质区的土壤和农作物硒含量低。其原因可能为,二叠系黑色岩系成土母质区拥有丰富的硒资源,随着风化作用源源不断地为农作物产区提供硒元素,部分耕地区域硒水平高或因开采后充分裸露的炭质页岩在风化淋溶作用下导致硒迁移至耕地,或因石煤熏火土肥、煤渣灰坐底肥的耕作习惯将硒人为地迁至耕地,使硒进一步增加。
5 结论
1)研究区表层土壤硒含量与全国各地相比处于较高水平,范围为(0.14~25.74)×10-6,背景值为0.81×10-6,是全国土壤硒背景值的3.7倍,富硒土壤面积占全区土壤面积的86.23%,分布有两条NEE向的富硒带,其中,龚家坪村、保水溪村及木栗园村具有大片硒极丰富区。
2)土壤硒分布与成土母质密切相关,二叠系黑色岩系沉积时硒大量富集,其中研究区二叠系茅口组、孤峰组、龙潭组、下窑组、大隆组黑色岩系风化区表层土壤硒富集系数超过3.00,远高于其他区域,而志留系、泥盆系碎屑沉积岩类母岩风化区土壤含量普遍偏低,富集系数最低为0.55。
3)高硒区农作物中的硒含量与根系土的硒含量相关性较高,如水稻(P<0.01,R=0.71)、玉米(P<0.01,R2=0.65)、萝卜(P<0.01,R=0.57)、白菜(P<0.01,R=0. 57)等作物,其中茶叶相关性最高,相关系数R=0.84,说明富硒根系土硒含量与茶叶、水稻、玉米、萝卜、白菜等农作物硒含量关系密切。低硒区玉米、土豆硒含量与根系土不相关,说明低硒区的土壤硒和玉米、土豆等农作物硒没有显著关系。
4)对不同地质年代成土母质和农作物硒元素关系的分析表现为二叠系、三叠系母质区的土壤和农作物硒含量高于志留系、泥盆系、石炭系母质区的土壤和农作物硒含量。对不同农作物生物富集系数分析得出,富硒能力强的作物表现相似,成土母质为二叠系、三叠系的区域,其农作物生物富集系数高,成土母质为志留系、泥盆系、石炭系的区域,其农作物生物富集系数相对较低,说明成土母质的不同对农作物硒含量的影响较大。
参考文献
The Importance of selenium to human health
[J].
The role of selenium in Keshan disease
[J].
Investigation of selenium nutritional status and dietary pattern among children in Kashin-beck disease endemic areas in Shaanxi Province,China using duplicate portion sampling method
[J].
Endemic Se intoxication of humans in China
[J].An endemic disease was discovered in 1961 in parts of the population of Enshi County, Hubei Province of the People's Republic of China. During the years of the highest prevalence, from 1961 to 1964, the morbidity was almost 50% in the 248 inhabitants of the five most heavily affected villages; its cause was determined to be selenium intoxication. The most common sign of the poisoning was loss of hair and nails. In areas of high incidence, lesions of the skin, nervous system, and possibly teeth may have been involved. A case is reported of a middle-aged, female hemiplegic, whose illness and death apparently were related to selenosis. Daily dietary intakes of selenium, estimated after the peak prevalence had subsided, averaged 4.99 (range 3.20 to 6.69) mg and hair and blood selenium levels averaged 32.2 and 3.2 micrograms/ml, respectively. Up to 1000x differences occurred when selenium contents of vegetables, cereals, scalp hair, blood, and urine from the selenosis areas were compared with those from Keshan disease (selenium deficiency) areas. The ultimate environmental source of selenium was a stony coal of very high selenium content (average more than 300 micrograms/g; one sample exceeded 80,000 micrograms/g). Selenium from the coal entered the soil by weathering and was available for uptake by crops because of the traditional use of lime as fertilizer in that region. This particular outbreak of human selenosis was due to a drought that caused failure of the rice crop, forcing the villagers to eat more high-selenium vegetables and maize and fewer protein foods.
硒的生理功能及富硒产品研究进展
[J].
Physiological functions of selenium and selenium-enriched products:A review
[J].
硒在“土壤—作物—食品—人体”食物链中的流动
[J].
Flow of selenium in the “soil-crop-food-human” Chain
[J].
DOI:10.7506/spkx1002-6630-20220716-184
[本文引用: 1]
Selenium (Se) is an indispensable micronutrient in the human body, which participates in various physiological and metabolic processes. Around the world, about 500 million to 1 billion people are at risk from selenium deficiency related diseases. In the agriculture-food system, selenium enters the food chain mainly from soil, and is accumulated in crops and then assimilated by the human body through diets. Using suitable agronomic measures to enhance the ability of crops to absorb and transform soil selenium can enable organic selenium to effectively accumulate in the edible parts of crops. However, the enrichment of selenium in crops does not mean that selenium can be completely retained in crop foods. The influence of food processing is extremely critical as well. Various processing conditions and parameters will affect the selenium content and speciation of the final products, thus affecting its bioavailability in the human body. This paper reviews the flow of selenium in the “soil-crop-food-human” chain, and summarizes the key factors that affect the content and speciation of selenium in foods and the bioavailability of selenium in the human body. It is suggested that all factors should be considered comprehensively to realize efficient conversion of selenium from farm to table.
Bioaccessibility of selenium,selenomethionine and selenocysteine from foods and influence of heat processing on the same
[J].
Profile of selenium in soil and crops in seleniferous area of Punjab,India by neutron activation analysis
[J].
陕西省典型高硒土壤的空间分布及主要农作物硒的含量特征和主要来源研究
[J].
Study on spatial distribution of typical high-selenium soil and content characteristics and main sources of selenium in main crops in Shaanxi Province
[J].
宁夏固原原州区土壤及农作物硒地球化学特征及其研究意义
[J].
Geochemical characteristics of selenium in soils and crops andits significance in Yuanzhou District,Guyuan,Ningxia
[J].
Geochemical relationship and profile distribution of selenium and cadmium in typical selenium-enriched areas in Enshi
[J].
Distribution and transport of selenium in Yutangba,China:Impact of human activities
[J].
Translocation and transformation of selenium in hyperaccumulator plant Cardamine enshiensis from Enshi,Hubei,China
[J].
Selenium in wheat from farming to food
[J].
DOI:10.1021/acs.jafc.1c04992
PMID:34907773
[本文引用: 1]
Selenium (Se) plays an important role in human health. Approximately 80% of the world's population does not consume enough Se recommended by the World Health Organization. Wheat is an important staple food and Se source for most people in the world. This review summarizes literature about Se from 1936 to 2020 to investigate Se in wheat farming soil, wheat, and its derived foods. Se fortification and the recommended Se level in wheat were also discussed. Results showed that Se contents in wheat farming soil, grain, and its derived foods around the world were 3.8-552 μg kg (mean of 220.99 μg kg), 0-8270 μg kg (mean of 347.30 μg kg), and 15-2372 μg kg (mean of 211.86 μg kg), respectively. Adopting suitable agronomic measures could effectively realize Se fortification in wheat. The contents in grain, flour, and its derived foods could be improved from 93.94 to 1181.92 μg kg, from 73.06 to 1007.75 μg kg, and from 86.90 to 587.61 μg kg on average after leaf Se fertilizer application in the field. There was a significant positive correlation between the Se content in farming soil and grain, and it was extremely the same between the foliar Se fertilizer concentration rate and the grain Se increased rate. The recommended Se fortification level in cultivation of wheat in China, India, and Spain was 18.53-23.96, 2.65-3.37, and 3.93-9.88 g hm, respectively. Milling processing and food type could greatly affect the Se content of wheat-derived food and should be considered seriously to meet people's Se requirement by wheat.
土壤硒含量影响因素及富硒土地资源区划研究——以湖北恩施沙地为例
[J].
The influencing factors of selenium in soils and classifying the selenium-rich soil resources in the typical area of Enshi,Hubei
[J].
Atmospheric concentrations and sources of trace metals at the south Pole
[J].The chemical composition of atmospheric particulate material collected at the geographic South Pole indicates that Al, Sc, Th, Sm, V, Mn, Eu, Fe, La, Ce, Co, Cr, Na, K, Mg, and Ca are derived from either crustal weathering or the ocean. The relatively volatile elements Zn, Cu, Sb, Se, Pb, and Br are apparently derived from other sources. Because of their volatility, vapor-phase condensation or a high-temperature dispersion source is suspected for these elements or their compounds.
The bioavailability of selenium and risk assessment for human selenium poisoning in high-Se areas,China
[J].
黑龙江省土壤硒分布及其影响因素研究
[J].
Distribution of selenium and its influencing factors in soils of Heilongjiang Province,China
[J].
香港土壤研究II:土壤硒的含量、分布及其影响因素
[J].
Hong Kong soil reserches II:Distribution and contect of selenium in soils
[J].
Background levels of selenium in some selected Brazilian tropical soils
[J].
克山病与环境硒等生命元素的关系
[J].
New progress in the causal association of Keshan disease with environmental selenium in China
[J].
Topographic constraints on the distribution of selenium in the supergene environment:A case study at Yutangba,China
[J].
Distribution of soil selenium and its relationship with parent rocks in Chengmai County,Hainan Island,China
[J].
Concentrations,distribution and influencing factors of selenium (Se) in soil of arid and semi-arid climate:A case from Zhangye-Yongchang Region,North-Western China
[J].
恩施地区富硒地层分布规律及其控制因素探讨
[J].
DOI:10.16536/j.cnki.issn.1671-1211.2018.04.008
[本文引用: 1]
通过对“世界硒都”恩施地区出露广泛的31个岩石地层单位(组)岩石采样检测发现,最富硒地层为二叠系孤峰组—大隆组,主要出露于恩施中东部和北部,其次为寒武系牛蹄塘组和奥陶—志留系龙马溪组,主要出露于恩施中南部;岩石硒元素与有机碳含量呈明显正相关,不同岩性岩石中硒元素富集规律为黑色岩系(碳硅质页岩)>煤层>碳酸盐岩(灰岩、白云岩)>泥岩>砂岩。探讨了富硒地层分布的控制因素,认为拉张性的大地构造背景下,深部硒元素易沿深大断裂或火山活动来到地表,并被同期浅海滞留盆地或深水陆棚等还原环境下沉积的大量有机碳吸附,完成主要富硒地层中硒元素沉积—同生阶段的源与汇。
Discussion on distribution regularity and controlling factors of selenium-rich strata in Enshi,Hubei Province
[J].
Bioavailability of selenium in soil-plant system and a regulatory approach
[J].
/
〈 |
|
〉 |
