E-mail Alert Rss
 

物探与化探, 2024, 48(1): 113-124 doi: 10.11720/wtyht.2024.1053

方法研究·信息处理·仪器研制

边缘特征和深度加权约束的重力三维相关成像反演

安国强,1, 鲁宝亮,1,2,3, 高新宇1, 朱武1,3,4, 李柏森1

1.长安大学 地质工程与测绘学院,陕西 西安 710054

2.海洋油气勘探国家工程研究中心,北京 100028

3.长安大学 西部矿产资源与地质工程教育部重点实验室,陕西 西安 710054

4.自然资源部 生态地质与灾害防控重点实验室,陕西 西安 710054

3D correlation tomography inversion of gravity anomalies constrained by edge features and depth weighting

AN Guo-Qiang,1, LU Bao-Liang,1,2,3, GAO Xin-Yu1, ZHU Wu1,3,4, LI Bo-Sen1

1. School of Geological Engineering and Geomatics, Chang’an University, Xi'an 710054, China

2. National Engineering Research Center of Offshore Oil and Gas Exploration, Beijing 100028, China

3. Key Laboratory of Western Mineral Resources and Geological Engineering, Ministry of Education, Chang'an University, Xi'an 710054, China

4. Key Laboratory of Ecological Geology and Disaster Prevention, Ministry of Natural Resources, Xi'an 710054, China

通讯作者: 鲁宝亮(1984-),男,博士,副教授,硕士生导师,主要从事重磁位场反演与深部构造研究工作。Email:lulb@chd.edu.cn

责任编辑: 王萌

收稿日期: 2023-02-15   修回日期: 2023-05-26  

基金资助: 国家自然科学基金项目(42374168)
国家自然科学基金项目(41904106)
中央高校基本科研业务费项目(300102260202)
中央高校基本科研业务费项目(300102262902)

Received: 2023-02-15   Revised: 2023-05-26  

作者简介 About authors

安国强(1997-),男,硕士研究生,主要从事重磁数据处理与反演工作。Email: 2021126077@chd.edu.cn

摘要

相关成像作为一种利用相关系数定性解释地质体空间位置的快速成像方法, 其不需要求解大型方程组就能够快速高效地得到地下异常体的分布, 具有计算方法简单稳定、计算速度快的优点。但是重力异常直接相关成像的结果存在深部发散、深度加权函数参数过多以及异常体之间横向分辨率和纵向分辨率低的问题。本文根据重力异常三维相关成像反演的基本原理, 引入重力异常均衡垂向导数和均衡解析信号振幅作为边缘特征对重力异常相关成像进行水平加权, 并且提出了一种更为简洁的深度加权函数。通过一系列的模型试验证明重力异常边缘特征约束提高了相关成像的横向分辨率; 使用新的深度加权函数提高了相关成像的纵向分辨率。最后, 将本文方法应用到澳大利亚Olympic Dam多金属矿区的实际资料中, 加权成像的结果与实际地质资料相吻合, 证明了该方法的正确性和有效性。

关键词: 重力异常; 相关成像; 水平加权; 深度加权; 边缘特征

Abstract

Correlation tomography is a fast tomography method using correlation coefficients to qualitatively interpret the spatial positions of geobodies. This method, featuring simple, stable, and fast calculations, can quickly and efficiently obtain the distribution of subsurface anomalies without solving large equations. However, the results of direct correlation tomography of gravity anomalies display deep divergence, excessive depth weighting function parameters, and low lateral and vertical resolution between anomalies. According to the fundamental principle of 3D correlation tomography inversion of gravity anomalies, this study introduced the balanced vertical derivative and balanced analytic signal amplitude of gravity anomalies as the edge features to horizontally weight the gravity anomaly correlation tomography, and proposed a more concise depth weighting function. As demonstrated by model tests, the lateral resolution of correlation tomography was improved under the constraint of gravity anomaly edge features, and the vertical resolution of correlation tomography was enhanced using the new depth weighting function. Finally, the method in this study was applied to the actual data of the Australian Olympic Dam polymetallic deposit, yielding consistent weighted tomography results with the actual geological data, thus proving the correctness and effectiveness of the method.

Keywords: gravity anomaly; correlation tomography; horizontal weighting; depth weighting; edge features

PDF (8443KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

安国强, 鲁宝亮, 高新宇, 朱武, 李柏森. 边缘特征和深度加权约束的重力三维相关成像反演[J]. 物探与化探, 2024, 48(1): 113-124 doi:10.11720/wtyht.2024.1053

AN Guo-Qiang, LU Bao-Liang, GAO Xin-Yu, ZHU Wu, LI Bo-Sen. 3D correlation tomography inversion of gravity anomalies constrained by edge features and depth weighting[J]. Geophysical and Geochemical Exploration, 2024, 48(1): 113-124 doi:10.11720/wtyht.2024.1053

0 引言

相关成像是一种利用相关系数定性解释地质体空间位置和形态的快速成像方法, 相比于常规重力异常反演方法, 其不需要求解大型方程组, 便能够快速提供异常体的平面位置、深度信息等。相关成像法最初是由Patella[1]提出, 用于自然电位测量数据进行地质目标体的三维成像与解释; Mauriello等[2-3]分别将该方法推广到了大地电磁领域和重磁领域; 此后相关成像方法被广泛应用于地球物理数据处理中[4-6]。从相关成像的原理出发, 郭良辉等[7-9]提出了重力、重力梯度数据三维相关成像方法以及磁异常的三维相关成像方法; 侯振隆等[10]提出基于泰勒级数的相关成像方法, 提高了成像速度。为了得到真实的物性参数, 孟小红等[11]和闫浩飞等[12]提出了迭代计算, 反演出了地质体的重磁物性参数。针对直接相关成像结果中出现深部发散的问题, 众多学者提出了不同的改进方法, 主要包括基于异常分离的相关成像[13], 重磁异常垂直梯度三维相关成像[14-15], 重力数据与重力梯度数据的联合相关成像[13,16-17], 基于窗口数据的相关成像[18], 基于深度加权的相关成像[16,19]。然而, 目前重力异常相关成像仍然存在横向分辨率低、深度加权函数超参数过多的问题。

在前人的研究基础上, 本文提出了基于边缘特征和深度加权约束的重力三维相关成像反演方法, 该方法较好地克服了相关成像横向分辨率不高以及深部发散的问题。根据重力相关成像的基本原理, 利用垂向导数(VDR, vertical derivative)和解析信号振幅(ASM, analytical signal amplitude)的边界均衡方法, 得到了异常体深部的水平边缘特征信息, 并提出了利用重力异常水平边缘特征: 均衡垂向导数和均衡解析信号振幅来改善重力异常相关成像横向分辨率的方法; 针对深度加权函数超参数过多的问题,提出了利用一种更为简洁的深度加权函数来改善重力异常相关成像纵向分辨率的方法。最后通过模型试验以及对澳大利亚Olympic Dam多金属矿区实际资料的计算, 证明了约束后的相关成像在横向分辨率和纵向分辨率方面得到了显著的提高, 验证了该方法的正确性和有效性。

1 方法原理

1.1 重力数据相关成像

重力相关成像是通过计算地下某质量点在地面产生的重力异常与实测重力异常之间的归一化互相关系数, 用以表示该质量点是异常源的概率大小。将地下待成像的空间剖分成均匀网格, 然后从地下浅层到深层计算所有网格节点的相关系数从而可以得到整个测区深度范围内各个位置的概率分布。其结果能显示出地下异常地质体的位置和视密度的相对大小[7,13]

首先将地下成像空间剖分为均匀网格, 并将单个网格视为点质量, 则根据式(1)可以计算地下某一网格qxq,yq,zq在地面上任意点x,y,z处产生的重力异常:

Δgqx,y,z=GΔσqvqzq-zxq-x2+yq-y2+zq-z232

其中:G为万有引力常数;Δσ为剩余密度;v是网格的体积。

定义测区重力异常与第q点质量重力异常的归一化互相关系数为式(2):

Cq=i=1NΔgxi,yi,ziΔgqxi,yi,zii=1NΔg2xi,yi,zii=1NΔgq2xi,yi,zi

将式(1)代入式(2), 假设剩余密度为正, 可以约掉GΔσv得到实测异常值Δg与质量基函数B的互相关系数计算式(3):

Cq=i=1NΔgxi,yi,ziBqxi,yi,zii=1NΔg2xi,yi,zii=1NBq2xi,yi,zi

式(3)中:

Bqxi,yi,zi=zq-zixq-xi2+yq-yi2+zq-zi232

相关系数Cq的取值范围在-1和1之间, 其绝对值越大, 表明地表的异常是由该质量点产生的概率越大。Cq值越接近于1, 表明该点质量剩余的可能性越大; 反之Cq值越接近于-1, 表明该点质量亏损的可能性越大[7,11]

1.2 深度加权约束

重力数据相关成像的结果在深部非常发散, 成像的位置与异常体实际的位置之间的误差较大, 即深度方向上的分辨率较低, 故需要引入深度加权函数来提高重力数据相关成像的纵向分辨率[16,19]。在重力三维密度正则化反演中常用深度加权函数提升纵向反演分辨率, Li等[20]、Commer等[21]提出了不同形式的深度加权函数, Li等[20]提出的表达式为:

Wz=1z+z0β/2

式中:z0是与异常体深度有关的常数;β是一个正数, 对于重力数据β=2;对于重力梯度数据β=3。 取z0=5,β=2时, 其函数图像如图1所示, 从图中可以看出, 其权重的大小随着深度的增加迅速减小, 在目标异常体的深度位置并没有较高的权重; 而本文对于深度加权函数的需求是在目标深度范围内具有较大权重, 其他深度范围具有较小权重, 故它不适用于解决相关成像在纵向上存在的分辨率低以及深度发散的问题。

图1

图1   前人提出的深度加权函数

Fig.1   The depth weighting function proposed by predecessors

(z1=100m,z2=300m,zmax=500m)


Commer等[21]提出的空间梯度加权函数通过引入先验信息来提高相关成像的分辨率, 其中z方向分量可以作为相关成像的深度加权函数使用[16,19],其表达式为:

Wz=α+er(z-z1)zmax1+er(z-z1)zmax·1+αer(z-z2)zmax1+er(z-z2)zmax

式中: zmax为研究区域地下空间范围内的最大深度; α为经验值, 决定近地表处的权值, 为克服趋肤效应,一般取α=0.001; z1为模型顶部深度, z2为模型底部深度, 二者的取值应由研究区域的地质资料等先验信息决定;r为缩放因子。该式与αz1z2zmaxr这5个参数有关性且形式较为复杂。当先验深度z1=100m,z2=300m,zmax=500m, α分别取0.1、0.01、0.001, r分别取100、10、1、20时, 深度加权函数对于目标深度的加权效果差异很大(图1)。

为了减少超参数对深度加权的影响, 本文提出了一种更简洁的深度加权函数, 其表达式为:

Wz=11+e[-k(z-z1)]·11+e[k(z-z2)]

该函数仅与z1, z2, k这3个参数有关。当先验信息z1=100 m, z2=300 m, k分别取值为0.05、0.10、0.20、0.50时, 其函数图像如图2所示, 可见k的值越小, 函数值随深度变化速率越慢, z1z2之间的权重逐渐降低; k的值越大, 函数值随深度变化速率越快, z1z2之间的权重逐渐增大, 图像越接近方波, 函数的光滑度降低。为了使深度加权函数更加光滑, 则k的值应越小; 为了保证z1z2之间的权重更大, 则k的值应越大; 因此, k的取值应兼顾深度加权函数的光滑性和高权重性, 可通过分析其函数图像, 选取适当的值。例如通过分析图2中不同k值的函数图像, 建议k的取值范围为0.1±0.05时, 可以看出在先验深度z1z2之间具有更大权重, 而且此时函数图像也较为光滑。

图2

图2   本文提出的深度加权函数

Fig.2   The depth weighting function proposed in this article

(z1=100m,z2=300m)


将上述深度加权函数应用于相关成像, 则深度加权后的相关系数可表示为:

CD=C·Wz

式中: CD为深度加权后的相关系数;C为未加权的相关系数; Wz为深度加权函数。

1.3 边缘特征约束

重力数据相关成像的结果在深度方向上通过引入深度加权函数可以提高成像的纵向分辨率, 然而在水平方向上存在多个异常体时, 重力数据相关成像无法准确地划分出异常体边界。本文通过引入边缘特征信息来改善重力数据相关成像的横向分辨率。边缘特征信息一般通过垂向导数(VDR)或解析信号振幅(ASM)获得。然而, 这类方法对于深部异常体的边界识别结果较为模糊。因此, 通过反正切函数将边缘特征的强、弱异常信号进行均衡放大, 实现深部边界识别。本文选择均衡垂向导数VDR和解析信号振幅(ASM)作为水平加权函数, 对比研究它们对重力数据相关成像横向分辨率的改善效果。

反正切函数的边界均衡识别方法, 其计算公式为:

Bfx,y,z0=arctanR·fx,y,z0

式中: R是均衡系数, 用来调节强、弱信号均衡放大的程度。如图3所示,从R分别取1、5、50、100时的函数图像可以看出,随着R的增大函数变化的斜率增大, 对于0值附近的值的放大程度也越大, 即可实现对于强、弱信号的均衡放大。将垂向导数和解析信号振幅边缘识别方法对相关成像进行水平加权, 则要求在识别的异常体位置区域具有较高的权重, 在非边缘位置区域的权重迅速减小为0, 从而达到增强边界信息的作用。

图3

图3   不同均衡系数的反正切均衡函数

Fig.3   Arctangent balance functions with different balance coefficients


垂向导数(VDR)方法最初由Hood等[22]和Bhattacharyya[23]提出, 该方法利用零值位置来识别地质体的边缘位置。将均衡垂向导数(取绝对值)归一化后应用于重力数据相关成像水平加权, 其计算公式为式(10)。

解析信号振幅(ASM)又称总梯度模量, 由Nabighian[24-25]提出, 该方法利用极大值位置来识别地质体的边缘位置。将均衡解析信号振幅归一化后应用于重力数据相关成像水平加权, 其计算公式为式(11)。

nBVDRx,y,z0=BVDRx,y,z0-minBVDRx,y,z0maxBVDRx,y,z0-minBVDRx,y,z0
nBASMx,y,z0=BASMx,y,z0-minBASMx,y,z0maxBASMx,y,z0-minBASMx,y,z0

式中:x,y分别是观测点坐标;z0是观测面的高度。

本文对重力数据相关成像的加权处理可统一写为:

CGT=C·Wz·Wh

式中:CGT为总加权相关系数; C为未加权相关系数;Wz为深度加权函数;Wh为水平加权函数, Wh可以为nBVDRnBASM

2 理论模型试验

2.1 含5%噪声试验

设置两个剩余密度、大小相同的直立长方体模型, 模型参数如表1所示; 平面测网在xy方向为0~1 000 m, 点距为10 m, 高度位于0 m; 成像范围为0~500 m。 如图4所示, 该模型的重力异常(图4a)含5%高斯白噪声, 计算出该模型的归一化均衡垂向导数(图4b)和归一化均衡解析信号振幅(图4c), 其中均衡系数R=10.0。

表1   模型参数(含5%噪声)

Table 1  Model parameters (including 5% noise)

编号模型名称x方向位置/my方向位置/mz方向位置/m剩余密度/
(g·cm-3)
1直立长方体[250,450][400,600][100,300]1.0
2直立长方体[550,750][400,600][100,300]1.0

新窗口打开| 下载CSV


图4

图4   剩余密度为1.0 g/cm3的两个相距100 m的异常体(含5%噪声)正演结果

a—重力异常;b—归一化均衡垂向导数(nBVDR);c—归一化均衡解析信号振幅(nBASM)

Fig.4   Forward results of two anomalous bodies (including 5% noise) with a residual density of 1.0 g/cm3 and a distance of 100 m

a—gravity anomaly;b—normalize the balanced vertical derivative (nBVDR);c—Normalize the balanced analytical signal amplitude (nBASM)


使用Commer等[21]提出的空间梯度加权函数对相关成像进行深度加权。空间梯度加权函数的先验深度信息z1=100 m, z2=300 m, 取zmax=500 m, α=0.001, r=50; 其相关成像深度加权的三维结果如图5a所示, y=500 m处的垂向切片如图5b所示, z=200 m处的水平切片如图5c所示。 从图中可以看出, Commer等[21]提出的空间梯度加权函数使成像位置集中在模型的先验深度范围内, 提高了相关成像的纵向分辨率; 但在水平方向上, 两个异常体之间的边界位置无法区分, 横向分辨率很低。

图5

图5   剩余密度为1.0 g/cm3的两个相距100 m的异常体(含5%噪声)相关成像加权结果

a—深度加权约束的成像结果;b—y=500 m的垂向切片(深度加权约束);c—z=200 m的水平切片(深度加权约束);d—本文方法成像结果(Wz+VDR加权);e—y=500 m的垂向切片(Wz+VDR加权);f—z=200 m的水平切片(Wz+VDR加权);g—本文方法成像结果(Wz+ASM加权);h—y=500 m的垂向切片(Wz+ASM加权);i—z=200 m的水平切片(Wz+ASM加权)

Fig.5   Weighted results of Correlation tomography of two anomalous bodies (including 5% noise) with a residual density of 1.0 g/cm3 and a distance of 100 m

a—imaging results with depth weighted constraints;b—vertical slice at y=500 m(depth weighted constraints);c—horizontal slice at z=200m(depth weighted constraints);d—imaging results of the method in this article (Wz+VDR weighted);e—vertical slice at y=500 m(Wz+VDR weighted);f—Horizontal slice at z=200 m(Wz+VDR weighted);g—imaging results of the method in this article (Wz+ASM weighted);h—vertical slice at y=500 m(Wz+ASM weighted);i—horizontal slice at z=200 m(Wz+ASM weighted)


使用本文提出的基于边缘特征与深度加权约束的重力相关成像反演方法的三维结果如图5d、g所示,y=500 m处的垂向切片如图5e、h所示, z=200 m处的水平切片如图5f、i所示。 其中纵向约束使用本文提出的深度加权函数, 先验信息上底z1取100 m, 下底z2取300 m, 调节因子k=0.1。 横向约束分别使用归一化均衡垂向导数和归一化均衡解析信号振幅。 从图中可以看出, 在本文提出的深度加权函数的基础上, 使用归一化均衡垂向导数和归一化均衡解析信号振幅的边缘特征信息均使相关成像的横向分辨率显著提高; 其中, 使用归一化均衡垂向导数的横向分辨率更高。 基于文章篇幅的原因, 本文就不再展示该模型不含噪声的试验。通过对比可知含5%噪声的结果与不含噪声的结果基本相同, 表明相关成像的方法具有良好的抗噪性, 故后文不再展示其他含噪试验结果。

2.2 复杂直立模型试验

为了研究不同剩余密度成像的效果, 设置了不同剩余密度直立长方体的组合模型; 平面测网在xy方向为0~1 000 m, 点距为10 m, 高度位于0 m, 成像范围为0~500 m。模型参数如表2所示。该模型的重力异常为图6a, 计算出该模型的归一化均衡垂向导数(图6b)和归一化均衡解析信号振幅(图6c), 其中均衡系数R=2.0。

表2   复杂直立模型参数

Table 2  Complex upright model parameters

编号模型名称x方向位置/my方向位置/mz方向位置/m剩余密度/
(g·cm-3)
1直立长方体[400,800][800,900][50,300]1.0
2直立长方体[150,250][250,550][50,300]-1.0
3直立长方体[600,800][200,400][50,300]1.0

新窗口打开| 下载CSV


图6

图6   复杂直立模型正演结果

a—重力异常;b—归一化均衡垂向导数(nBVDR);c—归一化均衡解析信号振幅(nBASM)

Fig.6   Forward results of complex upright model

a—gravity anomaly;b—normalize the balanced vertical derivative (nBVDR);c—normalize the balanced analytical signal amplitude (nBASM)


使用Commer等[21]提出的空间梯度加权函数对相关成像进行深度加权。先验深度信息z1=50 m, z2=300 m, 取zmax=500 m, α=0.001, r=50; 其相关成像深度加权的三维结果如图7a所示, 在水平方向上, 剩余密度为一正一负的异常体之间的边界位置可以区分, 但剩余密度都为正的异常体之间的边界位置无法区分, 横向分辨率很低。

图7

图7   复杂直立模型相关成像加权结果

a—深度加权约束的成像结果;b—y=300 m的垂向切片(深度加权约束);c—z=200 m的水平切片(深度加权约束);d—本文方法成像结果(Wz+VDR加权);e—y=300 m的垂向切片(Wz+VDR加权);f—z=200 m的水平切片(Wz+VDR加权);g—本文方法成像结果(Wz+ASM加权);h—y=300 m的垂向切片(Wz+ASM加权);i—z=200 m的水平切片(Wz+ASM加权)

Fig.7   Weighted results of correlation tomography for complex upright model

a—imaging results with depth weighted constraints;b—vertical slice at y=300 m(depth weighted constraints);c—horizontal slice at z=200 m(depth weighted constraints);d—imaging results of the method in this article (Wz+VDR weighted);e—vertical slice at y=300 m(Wz+VDR weighted);f—Horizontal slice at z=200 m(Wz+VDR weighted);g—imaging results of the method in this article (Wz+ASM weighted);h—Vertical slice at y=300 m(Wz+ASM weighted);i—horizontal slice at z=200 m(Wz+ASM weighted)


使用本文方法的三维结果如图7所示, 纵向约束所需先验信息上底z1取50 m, 下底z2取300 m, 调节因子k=0.1。横向约束分别使用归一化均衡垂向导数和归一化均衡解析信号振幅。经过加权后成像的纵向分辨率和横向分辨率显著提高; 其中, 使用归一化均衡垂向导数比归一化均衡解析信号振幅的纵向分辨率更高。

2.3 复杂倾斜模型试验

为了验证更为复杂的情况, 设置了不同剩余密度倾斜长方体和台阶的组合模型; 平面测网在xy方向为0~1 000 m, 点距为10 m, 高度位于0 m, 成像范围为0~500 m。模型参数如表3所示。该模型的重力异常为图8a, 计算出该模型的归一化均衡垂向导数(图8b)和归一化均衡解析信号振幅(图8c), 其中均衡系数R=10.0。

表3   复杂倾斜模型参数

Table 3  Complex tilt model parameters

编号模型名称模型最小埋深/m模型最大埋深/m剩余密度/
(g·cm-3)
1倾斜长方体99.547428.7251.0
2倾斜长方体99.791383.654-1.0
3台阶100.0350.01.0

新窗口打开| 下载CSV


图8

图8   复杂倾斜模型正演结果

a—重力异常;b—归一化均衡垂向导数(nBVDR);c—归一化均衡解析信号振幅(nBASM)

Fig.8   Forward results of complex tilt model

a—gravity anomaly;b—normalize the balanced vertical derivative (nBVDR);c—normalize the balanced analytical signal amplitude (nBASM)


使用Commer等[21]提出的空间梯度加权函数对相关成像进行深度加权三维结果如图9a所示。先验深度信息z1=99 m, z2=430 m, 取zmax=500 m, α=0.001, r=50; 同样在水平方向上, 剩余密度为一正一负的异常体之间的边界位置可以区分, 但剩余密度都为正的异常体之间的边界位置无法区分, 横向分辨率也很低。使用本文方法的三维结果如图9所示, 纵向约束所需先验信息上底z1取99 m,下底z2取430 m, 调节因子k=0.1。横向约束分别使用归一化均衡垂向导数和归一化均衡解析信号振幅。经过加权后成像的纵向分辨率和横向分辨率显著提高。

图9

图9   复杂倾斜模型相关成像加权结果

a—深度加权约束的成像结果;b—y=250 m的垂向切片(深度加权约束);c—z=250 m的水平切片(深度加权约束);d—本文方法成像结果(Wz+VDR加权);e—y=250 m的垂向切片(Wz+VDR加权);f—z=250 m的水平切片(Wz+VDR加权);g—本文方法成像结果(Wz+ASM加权);h—y=250 m的垂向切片(Wz+ASM加权);i—z=250 m的水平切片(Wz+ASM加权)

Fig.9   Weighted results of correlation tomography for complex tilt model

a—imaging results with depth weighted constraints;b—vertical slice at y=250 m(depth weighted constraints);c—horizontal slice at z=250 m(depth weighted constraints);d—imaging results of the method in this article (Wz+VDR weighted);e—vertical slice at y=250 m(Wz+VDR weighted);f—horizontal slice at z=250 m(Wz+VDR weighted);g—imaging results of the method in this article (Wz+ASM weighted);h—vertical slice at y=250 m(Wz+ASM weighted);i—horizontal slice at z=250 m(Wz+ASM weighted)


通过上述模型试验可以发现, 使用本文提出的深度加权函数对相关成像在深度方向加权, 使成像的结果在深部更加收敛, 且使成像的位置集中在所给的先验深度范围内, 使相关成像的纵向分辨率显著提高; 但深度加权函数受先验深度信息z1z2的影响较大, 故先验深度信息的选取对成像结果至关重要。

由于均衡垂向导数和均衡解析信号振幅的边缘特征方法可以增强对于异常体深部位置的识别, 故本文在水平方向上分别使用均衡垂向导数和均衡解析信号振幅对相关成像进行水平加权, 均使相关成像的横向分辨率显著提高; 其中, 使用均衡垂向导数加权的效果更好。

3 实际资料处理

澳大利亚的Olympic Dam (Cu-U-Au-Ag)金属矿床是南澳大利亚太古宙元古代高勒克拉通边缘的几种氧化铁—铜—金—铀(IOCG-U)矿床中最大的矿床[26-27], 矿床位于高勒前寒武纪克拉通东部, 基底构造层为广阔的隆起区, 区域岩石由区域变质岩、条带状磁铁石英岩和花岗岩组成。矿床被深而狭窄的地堑沉积不整合覆盖, 地堑由快速沉积的角砾岩、火山碎屑岩和长英质火山岩充填, 其上又被新元古代砂砾岩和寒武纪石灰岩层所覆盖。角砾岩的主要成分是花岗岩碎块和各种类型的赤铁矿。矿床中主要的硫化矿物有黄铜矿、斑铜矿和辉铜矿。品位较高的矿带由浸染状辉铜矿和斑铜矿组成, 产于矿床较高部位。铀品位较高的地区, 通常含有细脉和细粒浸染状沥青铀矿。金和银品位虽低,但与铜和铀共生,因而具有经济价值。在个别金矿化的地区, 稀土元素含量甚高[28-30]

IOCG型矿床,即铁氧化物—铜—金矿床, 指铁氧化物含量大于20%的铜—金矿床, 其一般具有规模大、品位高、元素多、埋藏浅、易采选等特点[31-32]。由于IOCG型矿床富含铁氧化物且蚀变范围广阔, 地球物理特征明显, 尤其是重磁力特征[33], 因此,高精度的重磁勘探是寻找IOCG矿床重要的有效手段之一。由于Olympic Dam多金属矿床受到含铁氧化物的影响,产生大量的磁铁矿、赤铁矿或半生矿物,这些组合物中铁氧化物具有不同的磁性,导致Olympic Dam多金属矿床的磁性特征变化较大,该变化也伴随较为显著的密度变化和重力变化,伴随铁氧化物蚀变产生明显的重力异常高[34]

图10显示了高勒—克拉顿省的地质结构[35]。在高勒—克拉顿省的东段, 以黑色矩形标记的Olympic Dam多金属矿区作为研究区域。图11显示了Olympic Dam多金属矿床的地质示意图[36]图12显示了该区域的4口钻井的岩心实测密度曲线。钻井岩心实测密度曲线及地质剖面图显示高密度岩体主要分布集中在400~1 400 m范围内。

图10

图10   高勒克拉顿省的基底地质图[35]

Fig.10   Basement geological map of the Gawler Craton Province [35]


图11

图11   超巨型Olympic Dam角砾岩群的简化地质图及剖面[36]

Fig.11   Simplified geological map and cross-sectional subsurface structure of the supergiant Olympic Dam breccia complex [36]


图12

图12   钻井岩心实测密度曲线

Fig.12   Drill core measured density curve


为了获得矿体引起的剩余重力异常, 使用二维小波多尺度分解方法[37]对该区域的布格重力异常数据进行异常的分离, 如图13a所示为重力异常的观测值, 图13b为区域重力异常, 图13c为剩余重力异常。对其剩余重力异常计算其归一化均衡垂向导数和归一化均衡解析信号振幅, 其中均衡系数R=2.0。

图13

图13   澳大利亚Olympic Dam重力异常分离结果

a—重力异常观测值;b—区域重力异常;c—剩余重力异常

Fig.13   Separation results of gravity anomaly at Olympic Dam, Australia

a—gravity anomaly observations;b—regional gravity anomaly;c—residual gravity anomaly


使用剩余重力异常数据进行相关成像, 由钻井资料可知该高密度体的先验深度信息大约在400~1 400 m。故在使用深度加权函数进行纵向约束时, 先验信息z1=400 m, z2=1 400 m, 调节因子k=0.01。再分别使用归一化均衡垂向导数和归一化均衡解析信号振幅进行水平加权, 相关成像加权结果的三维图、y=6 063.5 km处的垂向切片、z=750 m处的水平切片如图14所示。成像结果的水平位置与5%Fe含量等值线基本一致, 深度位置集中在400~1 400 m范围内; 其中均衡垂向导数比均衡解析信号振幅加权的分辨率更高; 本文方法成像的结果与前人反演的结果类似[38-39], 较好地反映了目标岩体的位置。

图14

图14   澳大利亚Olympic Dam剩余重力异常相关成像加权结果

a—本文方法成像结果(Wz+VDR加权);b—y=6 063.5 km的垂向切片(Wz+VDR加权);c—z=750 m的水平切片(Wz+VDR加权);d—本文方法成像结果(Wz+ASM加权);e—y=6 063.5 km的垂向切片(Wz+ASM加权);f—z=750 m的水平切片(Wz+ASM加权)

Fig.14   Weighted results of residual gravity anomaly correlation tomography at Olympic Dam, Australia

a—imaging results of the method in this article (Wz+VDR weighted);b—vertical slice at y=6 063.5 km(Wz+VDR weighted);c—horizontal slice at z=750 m(Wz+VDR weighted);d—imaging results of the method in this article (Wz+ASM weighted);e—vertical slice at y=6 063.5 km(Wz+ASM weighted);f—horizontal slice at z=750 m(Wz+ASM weighted)


4 结论

针对重力异常相关成像的结果存在深部发散、深度加权函数参数过多以及由于多个异常体的重力异常叠加导致相关成像横向分辨率和纵向分辨率低的问题。本文提出了基于边缘特征和深度加权约束的重力三维相关成像反演方法, 该方法引入了重力异常均衡垂向导数以及均衡解析信号振幅, 并且提出了一种更为简洁的深度加权函数, 较好地改善了重力异常相关成像的横向和纵向分辨率。通过模型试验以及对澳大利亚Olympic Dam多金属矿区实测重力资料的处理, 得到了如下结论:

1) 使用反正切函数对重力异常垂向导数和解析信号振幅识别的边界进行均衡, 可以得到异常体深部的边缘特征。将均衡垂向导数和均衡解析信号振幅作为重力相关成像的水平加权, 可以在横向上明显地区分出异常体的边界位置, 提高了重力异常相关成像的横向分辨率。

2) 本文提出的深度加权函数除了先验深度信息z1z2, 只与因子k有关, 需要给定的参数数量很少, 减少了超参数的选取对于深度加权的影响。通过给定先验深度信息z1z2有效地改善了相关成像深部发散的问题, 提高了重力异常相关成像的纵向分辨率。然而深度加权函数非常依赖先验深度信息z1z2, 可通过钻井等其他地球物理资料得到较为准确的先验深度信息, 从而获得较好的深度加权相关成像结果。

3) 本文方法更适用于直立块状异常体的三维成像, 对于倾斜板状异常体的成像效果有限。

4) 作为一种半定量的解释方法, 后续可为三维密度反演提供初始模型。

致谢

感谢南澳大利亚资源信息网站提供的Olympic Dam多金属矿区布格重力数据。

参考文献

Patella D.

Introduction to ground surface self-potential tomography

[J]. Geophysical Prospecting, 1997, 45(4):653-681.

DOI:10.1046/j.1365-2478.1997.430277.x      URL     [本文引用: 1]

A new approach to self‐potential (SP) data interpretation for the recognition of a buried causative SP source system is presented. The general model considered is characterized by the presence of primary electric sources or sinks, located within any complex resistivity structure with a flat air‐earth boundary. First, using physical considerations of the nature of the electric potential generated by any arbitrary distribution of primary source charges and the related secondary induced charges over the buried resistivity discontinuity planes, a general formula is derived for the potential and the electric field component along any fixed direction on the ground surface. The total effect is written as a sum of elementary contributions, all of the same simple mathematical form. It is then demonstrated that the total electric power associated with the standing natural electric field component can be written in the space domain as a sum of cross‐correlation integrals between the observed component of the total electric field and the component of the field due to each single constitutive elementary charge. By means of the cross‐correlation bounding inequality, the concept of a scanning function is introduced as the key to the new interpretation procedure. In the space domain, the scanning function is the unit strength electric field component generated by an elementary positive charge. Next, the concept of charge occurrence probability is introduced as a suitable function for the tomographic imaging of the charge distribution geometry underground. This function is defined as the cross‐correlation product of the total observed electric field component and the scanning function, divided by the square root of the product of the respective variances. Using this physical scheme, the tomographic procedure is described. It consists of scanning the section, through any SP survey profile, by the unit strength elementary charge, which is given a regular grid of space coordinates within the section, at each point of which the charge occurrence probability function is calculated. The complete set of calculated grid values can be used to draw contour lines in order to single out the zones of highest probability of concentrations of polarized, primary and secondary electric charges. An extension to the wavenumber domain and to three‐dimensional tomography is also presented and discussed. A few simple synthetic examples are given to demonstrate the resolution power of the new SP inversion procedure.

Mauriello P, Patella D.

Principles of probability tomography for natural-source electromagnetic induction fields

[J]. Geophysics, 1999, 64(5):1403-1417.

DOI:10.1190/1.1444645      URL     [本文引用: 1]

The 3-D interpretation problem of natural‐source electromagnetic (EM) induction field data collected over a flat air‐earth boundary is dealt with using the concept of probability tomography. This paper presents a method to recognize the most probable localization of the induced electric charge accumulations across resistivity discontinuities and current channeling inside conductive bodies. We begin by writing the solutions for the electric (magnetic) ground surface EM field components in the frequency domain as a sum of elementary contributions, each resulting from a single induced‐charge (dipole) element. Then we express the total electric (magnetic) power associated with each EM field component as a sum of crosscorrelation integrals between the measured component and the homologous synthetic expression resulting from each causative induced‐charge (dipole) element. The synthetic component takes the key role of scanner function in the new imaging procedure. Moreover, using the crosscorrelation bounding inequality we introduce the concept of EM induction occurrence probability as a suitable parameter for the tomographic representation of the induced‐charge and dipole distributions underground. For each electric and magnetic surface component we define the corresponding occurrence probability function as the crosscorrelation product of the observed component and the relative scanning function, divided by the square root of the product of the respective variances. In the space domain, the 3-D tomographic procedure consists of scanning the half‐space below the survey area by the unit strength charge or dipole element, which is given a regular grid of space coordinates within the volume. At each node of the grid, the occurrence probability function is calculated. We use the complete set of calculated grid values to single out the zones of highest occurrence probability of electric charge accumulations and current channeling elements. The physical reliability of the proposed tomography is tested on synthetic and field examples.

Mauriello P, Patella D.

Gravity probability tomography:A new tool for buried mass distribution imaging

[J]. Geophysical Prospecting, 2001, 49(1):1-12.

DOI:10.1046/j.1365-2478.2001.00234.x      URL     [本文引用: 1]

Following the probability tomography principles previously introduced to image the sources of electric and electromagnetic anomalies, we demonstrate that a similar approach can be used to analyse gravity data. First, we give a coherent derivation of the Bouguer anomaly concept as a Newtonian‐type integral for an arbitrary mass distribution buried below a non‐flat topography. A discretized solution of this integral is then derived as a sum of elementary contributions, which are cross‐correlated with the gravity data function in the expression for the total power associated with the Bouguer anomaly. To image the mass distribution underground we introduce a mass contrast occurrence probability function using the cross‐correlation product of the observed Bouguer anomaly and the synthetic field due to an elementary mass contrast source. The tomographic procedure consists of scanning the subsurface with the elementary source and calculating the occurrence probability function at the nodes of a regular grid. The complete set of grid values is used to highlight the zones of highest probability of mass contrast concentrations. Some synthetic and field examples demonstrate the reliability and resolution of the new gravity tomographic approach.

Iuliano T, Mauriello P, Patella D.

Looking inside Mount Vesuvius by potential fields integrated probability tomographies

[J]. Journal of Volcanology and Geothermal Research, 2002, 113(3-4):363-378.

DOI:10.1016/S0377-0273(01)00271-2      URL     [本文引用: 1]

许令周, 关继腾, 房文静.

高次导数的概率成像原理

[J]. 青岛大学学报:自然科学版, 2003, 16(4):32-36,40.

[本文引用: 1]

Xu L Z, Guan J T, Fang W J.

Theory of probability tomography about second derivative formula

[J]. Journal of Qingdao University:Natural Science Edition, 2003, 16(4):32-36,40.

[本文引用: 1]

王绪本, 毛立峰, 高永才.

电磁导数场概率成像方法研究

[J]. 成都理工大学学报:自然科学版, 2004, 31(6):679-684.

[本文引用: 1]

Wang X B, Mao L F, Gao Y C.

Probability tomography of electromagnetic field-derivative method

[J]. Journal of Chengdu University of Technology:Science and Technology Edition, 2004, 31(6):679-684.

[本文引用: 1]

郭良辉, 孟小红, 石磊, .

重力和重力梯度数据三维相关成像

[J]. 地球物理学报, 2009, 52(4):1098-1106.

[本文引用: 3]

Guo L H, Meng X H, Shi L, et al.

3-D correlation imaging for gravity and gravity gradiometry data

[J]. Chinese Journal of Geophysics, 2009, 52(4):1098-1106.

[本文引用: 3]

郭良辉, 孟小红, 石磊.

磁异常ΔT三维相关成像

[J]. 地球物理学报, 2010, 53(2):435-441.

[本文引用: 1]

Guo L H, Meng X H, Shi L.

3D correlation imaging for magnetic anomaly ΔT data

[J]. Chinese Journal of Geophysics, 2010, 53(2):435-441.

[本文引用: 1]

Guo L H, Meng X H, Zhang G L.

Three-dimensional correlation imaging for total amplitude magnetic anomaly and normalized source strength in the presence of strong remanent magnetization

[J]. Journal of Applied Geophysics, 2014, 111:121-128.

DOI:10.1016/j.jappgeo.2014.10.007      URL     [本文引用: 1]

侯振隆, 王恩德.

基于泰勒级数的重力异常数据快速相关成像

[J]. 东北大学学报:自然科学版, 2019, 40(4):563-568.

[本文引用: 1]

Hou Z L, Wang E D.

Fast probability tomography of gravity anomaly data based on Taylor series

[J]. Journal of Northeastern University:Natural Science Edition, 2019, 40(4):563-568.

[本文引用: 1]

孟小红, 刘国峰, 陈召曦, .

基于剩余异常相关成像的重磁物性反演方法

[J]. 地球物理学报, 2012, 55(1):304-309.

[本文引用: 2]

Meng X H, Liu G F, Chen Z X, et al.

3D gravity and magnetic inversion for physical properties based on residual anomaly correlation

[J]. Chinese Journal of Geophysics, 2012, 55(1):304-309.

[本文引用: 2]

闫浩飞, 刘国峰.

一种重力异常概率成像的扩展计算

[J]. 地球物理学进展, 2014, 29(4):1837-1842.

[本文引用: 1]

Yan H F, Liu G F.

A extension of probability tomography of gravity data

[J]. Progress in Geophysics, 2014, 29(4):1837-1842.

[本文引用: 1]

林涛, 曾昭发, 于平, .

基于层源位场的重力及其梯度数据联合相关成像

[J]. 世界地质, 2022, 41(1):186-197.

[本文引用: 3]

Lin T, Zeng Z F, Yu P, et al.

Joint probability tomography for gravity and its gradiometry data based on strata-source potential field

[J]. World Geology, 2022, 41(1):186-197.

[本文引用: 3]

Guo L H, Meng X H, Shi L.

3D correlation imaging of the vertical gradient of gravity data

[J]. Journal of Geophysics and Engineering, 2011, 8(1):6-12.

DOI:10.1088/1742-2132/8/1/002      URL     [本文引用: 1]

石磊, 郭良辉, 孟小红.

磁总场异常垂直梯度三维相关成像

[J]. 地球物理学进展, 2012, 27(4):1609-1614.

[本文引用: 1]

Shi L, Guo L H, Meng X H.

3D correlation imaging of the vertical gradient of magnetic total field anomaly

[J]. Progress in Geophysics, 2012, 27(4):1609-1614.

[本文引用: 1]

郑玉君, 侯振隆, 巩恩普, .

基于深度加权的多分量重力梯度数据联合相关成像方法

[J]. 吉林大学学报:地球科学版, 2020, 50(4):1197-1210.

[本文引用: 4]

Zheng Y J, Hou Z L, Gong E P, et al.

Correlation imaging method with joint multiple gravity gradiometry data based on depth weighting

[J]. Journal of Jilin University:Earth Science Edition, 2020, 50(4):1197-1210.

[本文引用: 4]

马国庆, 牛润馨, 李丽丽, .

基于重磁不同阶比值的场源相关成像法研究

[J]. 地球物理学进展, 2021, 36(5):2062-2068.

[本文引用: 1]

Ma G Q, Niu R X, Li L L, et al.

Non-degree gradient ratio function of gravity and magnetic data for field-source correlation imaging method study

[J]. Progress in Geophysics, 2021, 36(5):2062-2068.

[本文引用: 1]

赵国兴, 吴燕冈, 王凤刚, .

基于窗口数据的重力相关成像

[J]. 世界地质, 2016, 35(3):858-864.

[本文引用: 1]

Zhao G X, Wu Y G, Wang F G, et al.

Gravity correlation imaging based on window data

[J]. Global Geology, 2016, 35(3):858-864.

[本文引用: 1]

侯振隆, 郑玉君, 巩恩普, .

基于深度加权的重力梯度数据联合相关成像反演

[J]. 东北大学学报:自然科学版, 2020, 41(11):1628-1632.

[本文引用: 3]

Hou Z L, Zheng Y J, Gong E P, et al.

Joint correlation imaging inversion with gravity gradiometry data based on depth weighting

[J]. Journal of Northeastern University:Natural Science Edition, 2020, 41(11):1628-1632.

[本文引用: 3]

Li Y G, Oldenburg D W.

3D inversion of magnetic data

[J]. Geophysics, 1996, 61(2):394-408.

DOI:10.1190/1.1443968      URL     [本文引用: 2]

We present a method for inverting surface magnetic data to recover 3-D susceptibility models. To allow the maximum flexibility for the model to represent geologically realistic structures, we discretize the 3-D model region into a set of rectangular cells, each having a constant susceptibility. The number of cells is generally far greater than the number of the data available, and thus we solve an underdetermined problem. Solutions are obtained by minimizing a global objective function composed of the model objective function and data misfit. The algorithm can incorporate a priori information into the model objective function by using one or more appropriate weighting functions. The model for inversion can be either susceptibility or its logarithm. If susceptibility is chosen, a positivity constraint is imposed to reduce the nonuniqueness and to maintain physical realizability. Our algorithm assumes that there is no remanent magnetization and that the magnetic data are produced by induced magnetization only. All minimizations are carried out with a subspace approach where only a small number of search vectors is used at each iteration. This obviates the need to solve a large system of equations directly, and hence earth models with many cells can be solved on a deskside workstation. The algorithm is tested on synthetic examples and on a field data set.

Commer M, Newman G A, Williams K H, et al.

3D induced-polarization data inversion for complex resistivity

[J]. Geophysics, 2011, 76(3):F157-F171.

DOI:10.1190/1.3560156      URL     [本文引用: 6]

The conductive and capacitive material properties of the subsurface can be quantified through the frequency-dependent complex resistivity. However, the routine three-dimensional (3D) interpretation of voluminous induced polarization (IP) data sets still poses a challenge due to large computational demands and solution nonuniqueness. We have developed a flexible methodology for 3D (spectral) IP data inversion. Our inversion algorithm is adapted from a frequency-domain electromagnetic (EM) inversion method primarily developed for large-scale hydrocarbon and geothermal energy exploration purposes. The method has proven to be efficient by implementing the nonlinear conjugate gradient method with hierarchical parallelism and by using an optimal finite-difference forward modeling mesh design scheme. The method allows for a large range of survey scales, providing a tool for both exploration and environmental applications. We experimented with an image focusing technique to improve the poor depth resolution of surface data sets with small survey spreads. The algorithm’s underlying forward modeling operator properly accounts for EM coupling effects; thus, traditionally used EM coupling correction procedures are not needed. The methodology was applied to both synthetic and field data. We tested the benefit of directly inverting EM coupling contaminated data using a synthetic large-scale exploration data set. Afterward, we further tested the monitoring capability of our method by inverting time-lapse data from an environmental remediation experiment near Rifle, Colorado. Similar trends observed in both our solution and another 2D inversion were in accordance with previous findings about the IP effects due to subsurface microbial activity.

Hood P, McClure D J.

Gradient measurements in ground magnetic prospecting

[J]. Geoghysics, 1965, 30(3):403-410.

[本文引用: 1]

Bhattacharyya B K.

Two-dimensional harmonic analysis as a tool for magnetic interpretation

[J]. Geophysics, 1965, 30(5):829-857.

DOI:10.1190/1.1439658      URL     [本文引用: 1]

The total magnetic field values over an area can be represented exactly by a double Fourier series expansion. In this analysis, such an expansion is used to evaluate very accurately the fields continued downward and upward from the plane of observation and the vertical derivatives of the total field. This harmonic expansion of the anomalous total field makes it possible to calculate, with exceptional accuracy, the field reduced to the magnetic pole and its second derivative. The results of the calculations are free from the effect of the inclination of the earth’s main geomagnetic field and that of the polarization vector, at all magnetic latitudes and for all possible directions of polarization. In order to determine the influence of remanence on the above field, a number of anomalies caused by rectangular block‐type bodies with known polarization are reduced to the magnetic pole, correcting only for the obliquity of the earth’s normal field. It is concluded from a study of these anomalies that the interpretation of magnetic data based on the assumption of rock magnetization due solely to induction in the earth’s field may yield erroneous results, particularly when remanence is important.

Nabighian M N.

The analytic signal of two-dimensional magnetic bodies with polygonal cross-section:Its properties and use for automated anomaly interpretation

[J]. Geophysics, 1972, 37(3):507-517.

DOI:10.1190/1.1440276      URL     [本文引用: 1]

This paper presents a procedure to resolve magnetic anomalies due to two‐dimensional structures. The method assumes that all causative bodies have uniform magnetization and a cross‐section which can be represented by a polygon of either finite or infinite depth extent. The horizontal derivative of the field profile transforms the magnetization effect of these bodies of polygonal cross‐section into the equivalent of thin magnetized sheets situated along the perimeter of the causative bodies. A simple transformation in the frequency domain yields an analytic function whose real part is the horizontal derivative of the field profile and whose imaginary part is the vertical derivative of the field profile. The latter can also be recognized as the Hilbert transform of the former. The procedure yields a fast and accurate way of computing the vertical derivative from a, given profile. For the case of a single sheet, the amplitude of the analytic function can be represented by a symmetrical function maximizing exactly over the top of the sheet. For the case of bodies with polygonal cross‐section, such symmetrical amplitude functions can be recognized over each corner of each polygon. Reduction to the pole, if desired, can be accomplished by a simple integration of the analytic function, without any cumbersome transformations. Narrow dikes and thin flat sheets, of thickness less than depth, where the equivalent magnetic sheets are close together, are treated in the same fashion using the field intensity as input data, rather than the horizontal derivative. The method can be adapted straightforwardly for computer treatment.It is also shown that the analytic signal can be interpreted to represent a complex “field intensity,” derivable by differentiation from a complex “potential.” This function has simple poles at each polygon corner. Finally, the Fourier spectrum due to finite or infinite thin sheets and steps is given in the Appendix.

Nabighian M N.

Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms:Fundamental relations

[J]. Geophysics, 1984, 49(6):780-786.

DOI:10.1190/1.1441706      URL     [本文引用: 1]

The paper extends to three dimensions (3-D) the two‐dimensional (2-D) Hilbert transform relations between potential field components. For the 3-D case, it is shown that the Hilbert transform is composed of two parts, with one part acting on the X component and one part on the Y component. As for the previously developed 2-D case, it is shown that in 3-D the vertical and horizontal derivatives are the Hilbert transforms of each other. The 2-D Cauchy‐Riemann relations between a potential function and its Hilbert transform are generalized for the 3-D case. Finally, the previously developed concept of analytic signal in 2-D can be extended to 3-D as a first step toward the development of an automatic interpretation technique for potential field data.

Vella L.

Interpretation and modelling,based on petrophysical measurements,of the wirrda well potential field anomaly,South Australia

[J]. Exploration Geophysics, 1997, 28(1-2):299-306.

DOI:10.1071/EG997299      URL     [本文引用: 1]

Cherry A R, McPhie J, Kamenetsky V S, et al.

Linking Olympic Dam and the Cariewerloo Basin:Was a sedimentary basin involved in formation of the world’s largest uranium deposit?

[J]. Precambrian Research, 2017, 300:168-180.

DOI:10.1016/j.precamres.2017.08.002      URL     [本文引用: 1]

朱意萍, 高卫华, 马娜, .

澳大利亚铀矿的成矿区划、矿床类型及找矿前景

[J]. 地质通报, 2014, 33(2/3):172-186.

[本文引用: 1]

Zhu Y P, Gao W H, Ma N, et al.

Metallogenic regionalization,deposit types and ore-search prospect for uranium deposits in Australia

[J]. Geological Bulletin of China, 2014, 33(2/3):172-186.

[本文引用: 1]

McPhie J, Orth K, Kamenetsky V, et al.

Characteristics,origin and significance of Mesoproterozoic bedded clastic facies at the Olympic Dam Cu-U-Au-Ag deposit,South Australia

[J]. Precambrian Research, 2016, 276:85-100.

DOI:10.1016/j.precamres.2016.01.029      URL     [本文引用: 1]

MacMillan E, Cook N J, Ehrig K, et al.

Uraninite from the Olympic Dam IOCG-U-Ag deposit:Linking textural and compositional variation to temporal evolution

[J]. American Mineralogist, 2016, 101(6):1295-1320.

DOI:10.2138/am-2016-5411      URL     [本文引用: 1]

Williams P J, Barton M D, Johnson D A, et al.

Iron oxide copper-gold deposits:Geology,space-time distribution,and possible modes of origin

[J]// Economic Geology 100th Anniversary Volume, 2005:371-405.

[本文引用: 1]

Sillitoe R H.

Iron oxide-copper-gold deposits:An Andean view

[J]. Mineralium Deposita, 2003, 38(7):787-812.

DOI:10.1007/s00126-003-0379-7      URL     [本文引用: 1]

陈超, 潘伟, 董国明, .

高精度磁测在IOCG型铁矿勘查中的应用——以智利英格瓦塞铁矿为例

[J]. 地质通报, 2020, 39(4):563-573.

[本文引用: 1]

Chen C, Pan W, Dong G M, et al.

The application of high-precision magnetic survey to exploration of IOCG type iron deposits:Exemplified by the Incaguasi iron deposit in Chile

[J]. Geological Bulletin of China, 2020, 39(4):563-573.

[本文引用: 1]

Austin J, Foss C.

Rich,attractive and extremely dense:A geophysical review of Australian IOCGs

[J]. ASEG Extended Abstracts, 2012, 2012(1):1-4.

[本文引用: 1]

Direen N G, Lyons P.

Regional crustal setting of iron oxide Cu-Au mineral systems of the Olympic Dam region,South Australia:Insights from potential-field modeling

[J]. Economic Geology, 2007, 102(8):1397-1414.

DOI:10.2113/gsecongeo.102.8.1397      URL     [本文引用: 3]

Kirchenbaur M, Maas R, Ehrig K, et al.

Uranium and Sm isotope studies of the supergiant Olympic Dam Cu-Au-U-Ag deposit,South Australia

[J]. Geochimica et Cosmochimica Acta, 2016, 180:15-32.

DOI:10.1016/j.gca.2016.01.035      URL     [本文引用: 3]

杨文采, 施志群, 侯遵泽, .

离散小波变换与重力异常多重分解

[J]. 地球物理学报, 2001, 44(4):534-541,582.

[本文引用: 1]

Yang W C, Shi Z Q, Hou Z Z, et al.

Discrete wavelet transform for multiple decomposition of gravity anomalies

[J]. Chinese Journal of Geophysics, 2001, 44(4):534-541,582.

[本文引用: 1]

Yang M, Wang W Y, Kim Welford J, et al.

3D gravity inversion with optimized mesh based on edge and center anomaly detection

[J]. Geophysics, 2019, 84(3):G13-G23.

DOI:10.1190/GEO2018-0390.1      [本文引用: 1]

Gravity inversion is inherently nonunique. Minimum-structure inversion has proved effective at dealing with this non-uniqueness. However, such an inversion approach, which involves a large number of unknown parameters, is computationally expensive. To improve efficiency while retaining the advantages of a minimum-structure-style inversion, we have developed a new method, based on edge detection and center detection of geologic bodies, to help to focus the spatial extent of meshing for gravity inversion. The chosen method of edge detection, normalized vertical derivative of the total horizontal derivative, helps to outline areas to be meshed by approximating the edges of key geophysical bodies. Next, the method of center detection, normalized vertical derivative of the analytic signal amplitude, helps to confirm the center of the areas to be meshed, then a binary mesh flag is generated. In this paper, the binary mesh flag, restricting the spatial extent of meshing, is first undertaken using the two methods, and it is shown to dramatically reduce the number of grid cells from 574,992 for the whole research volume to 170,544 for the localized mesh by the same size of cell, which is decreased by almost 70%. Second, gravity inversion is performed using the spatially restricted mesh. The recovered model constructed using the binary mesh flag is similar to the model obtained using the mesh spanning the whole volume and saves approximately 80% of the CPU time. Finally, a real gravity data example from Olympic Dam in Australia is successfully used to test the validity and practicability of this proposed method. The geologic source bodies are resolved between 250 and 750 m depth. Overall, the combination of edge detection and center detection, and our binary mesh flag, succeed in reducing the number of cells and saving the CPU time and computer storage required for gravity inversion.

Zhang S, Yin C C, Cao X Y, et al.

DecNet:Decomposition network for 3D gravity inversion

[J]. Geophysics, 2022, 87(5):G103-G114.

DOI:10.1190/geo2021-0744.1      URL     [本文引用: 1]

Three dimensional gravity inversion is an effective way to extract subsurface density distribution from gravity data. Different from the conventional geophysics-based inversions, machine-learning-based inversion is a data-driven method mapping the observed data to a 3D model. We have developed a new machine-learning-based inversion method by establishing a decomposition network (DecNet). Unlike existing machine-learning-based inversion methods, the proposed DecNet method is a mapping from 2D to 2D, which requires less training time and memory space. Instead of learning the density information of each grid point, this network learns the boundary position, vertical center, thickness, and density distribution by 2D-to-2D mapping and reconstructs the 3D model by using these predicted parameters. Furthermore, by using the highly accurate boundary information learned from this network as supplement information, the DecNet method is optimized into a DecNetB method. By comparing the least-squares inversion and U-Net inversion on synthetic and real survey data, the DecNet and DecNetB methods have shown the advantage in dealing with inverse problems for targets with boundaries.

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com