E-mail Alert Rss
 

物探与化探, 2023, 47(6): 1588-1594 doi: 10.11720/wtyht.2023.0009

方法研究·信息处理·仪器研制

时变分频反褶积在提高薄砂体预测精度方面的应用

赵泽茜,1, 成丽芳2, 范殿佐1

1.中国地质大学(北京) 地球物理与信息技术学院,北京 100083

2.运城市规划和自然资源局,山西 运城 044000

Application of time-varying frequency-division deconvolution in improving the prediction accuracy of thin sand bodies

ZHAO Ze-Xi,1, CHENG Li-Fang2, FAN Dian-Zuo1

1. School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China

2. Yuncheng Municipal Bureau of Planning and Natural Resources, Yuncheng 044000, China

责任编辑: 叶佩,沈效群

收稿日期: 2023-01-4   修回日期: 2023-04-21  

基金资助: 中国石油化工股份有限公司项目“东濮凹陷高密度地震勘探关键技术研究与应用”(P22146)

Received: 2023-01-4   Revised: 2023-04-21  

作者简介 About authors

赵泽茜(1998-),女,硕士研究生,主要研究方向为三维地震综合解释。Email:HyggeZhao@163.com

摘要

地震资料分辨率可以直接影响油藏描述精度。为了提升地震资料的分辨率,针对复杂断块、含油砂体厚度薄、砂体预测难等问题,建立了时变分频反褶积提频技术流程。首先,针对地震信号进行分时窗,在每一时窗内求地震子波,从而得到子波的振幅谱;然后,在每一时窗内利用对应地震子波进行反褶积,求取反射系数;最后,综合整个地震资料的反射系数和褶积高频率、低频率子波,得到高分辨率的宽频地震信号。将此方法应用于中原油田文南地区实际三维地震资料的处理中,结果表明:该方法能够明显拓宽采集的三维叠后地震资料高频有效信息,对单砂体的刻画能力有较大提高,得到的数据效果更有利于识别薄层,且预测结果与实际钻井结果吻合程度更高。该技术在复杂断块地区有较大的应用前景。

关键词: 时变分频反褶积; 时变子波; 砂体预测; 文南地区

Abstract

The resolution of seismic data directly influences the characterization accuracy of oil reservoirs. To improve the resolution for effective sand body prediction, this study established a frequency enhancement technology process based on time-varying frequency-division deconvolution for thin oil-bearing sand bodies occurring in complex fault blocks. First, seismic signals were separated into different time windows, in which seismic wavelets were computed to obtain their amplitude spectra. Then, the corresponding seismic wavelets were deconvoluted within each time window to obtain the reflection coefficients. Finally, high-resolution broadband seismic signals were attained by integrating the reflection coefficients of the entire seismic data and convolving high-and low-frequency wavelets. This technology process was employed to process the actual 3D seismic data from the Wennan area of the Zhongyuan Oilfield. As indicated by the results, this technology process had a significantly elevated capacity to depict a single sand body by expanding the high-frequency effective information in acquired 3D post-stack seismic data, thus yielding high-quality data for the identification of thin sand bodies. Moreover, the prediction results were highly consistent with the actual drilling results. Therefore, the time-varying frequency-division deconvolution has great potential for application in complex fault blocks.

Keywords: time-varying frequency-division deconvolution; time-varying wavelet; sand body prediction; Wennan area

PDF (6233KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

赵泽茜, 成丽芳, 范殿佐. 时变分频反褶积在提高薄砂体预测精度方面的应用[J]. 物探与化探, 2023, 47(6): 1588-1594 doi:10.11720/wtyht.2023.0009

ZHAO Ze-Xi, CHENG Li-Fang, FAN Dian-Zuo. Application of time-varying frequency-division deconvolution in improving the prediction accuracy of thin sand bodies[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1588-1594 doi:10.11720/wtyht.2023.0009

0 引言

地震数据处理难度的增加要求更高分辨率的地震数据解释,获取高分辨率地震数据已成为一种趋势。目前有多种地震数据提频方法,如预测反褶积、短时傅里叶变换、Gabor变换、小波变换、魏格纳-威利分布、反Q滤波、S变换等,均取得了明显的应用效果。但同时也存在一些局限性:常规预测反褶积是基于单道匹配滤波模式,而单道匹配滤波很难将有效反射波从重叠的能量中分离出来,结果会导致在消除多次波的同时有效波也被消除[1-2];短时傅里叶变换虽然计算简单,可以反映信号的整体趋势,但仅限于以某个固定的分辨率进行时频分析,这就在拓宽频带方面有更多限制[3];基于短时傅里叶变换来的Gabor变化为高斯窗函数,高斯窗函数的傅里叶变换仍为高斯窗函数,这使得短时傅里叶变换的逆变换也是用窗函数局部化,所以可以实现频率域和时间域的局部化,但同时时窗不可变,时频分辨率受到海森伯测不准原理的限制[4];小波变换克服了短时傅里叶变换单分辨率的问题,实现了窗函数的可变性,但是相位信息仅仅是局部的相位,不具有物理意义,且在高频区段的分辨率比较差[5-6];魏格纳-威利分布在时频平面内有其信号能量,具有良好的时频聚焦性,但具有交叉性干扰和失真的问题[7];常规反Q滤波在对地震波进行补偿处理时,振幅补偿函数随频率的增大而呈指数增长,尤其在地震资料深层地震波能量衰减较大的地方,用该方法对介质吸收衰减进行补偿处理,会严重抬高高频噪音的能量,使得地震资料信噪比严重降低,同时如何较为准确地估计Q值是该方法需要解决的难题[8-10];S变换结合了小波变换与短时傅里叶变换,所以不可避免地出现基本变换函数的窗函数形态固定的问题[11]

研究区W278块断层复杂,砂体普遍较薄,地震资料品质差。常规的反褶积技术是利用静态子波进行反褶积处理,难以满足研究区的薄砂体识别需求。时变分频反褶积方法与常规反褶积类方法最大的区别在于利用时变子波来进行反褶积,综合考虑了地震资料和测井资料[12],得到的地震剖面结果具有可控性,能够避免常规反褶积方法利用同一地震子波与测井曲线求取反射系数序列的缺点,得到高分辨率地震资料,有助于薄砂体的进一步预测[13]。将该方法应用于文南—桥口地区的W278块研究区,对实际地震资料进行提频处理,拓宽了地震资料分辨率,提高了砂体识别精度,对储层展布和不连续砂体进行了描述和刻画,达到了预测目的。

2 方法原理

根据Robinson褶积模型,有:

x(t)=w(t)*r(t)+n(t),

式中:x(t)为地震记录;w(t)为地震子波;r(t)为地层反射系数;n(t)为干扰波。如果忽略n(t)的影响,则地震褶积模型变为

x(t)=w(t)*r(t)

设地层反褶积算子为b(t),则有

b(t)*x(t)=w-1(t)*w(t)*r(t)=δ(t)*r(t)=r(t),

其中w-1(t)是反子波,结合式(2)、(3),有

x(t)=w(t)*b(t)*x(t),

所以:

δ(t)=w(t)*b(t),

以此消除子波的影响,这个过程即为反褶积。常规反褶积是同一个不变的地震子波所求取的反射系数,而时变分频反褶积则是对不同时窗的地震信号采用不同频率的地震子波来进行反褶积处理,使反褶积的结果与真正的地层反射系数更相近。同时,常规反褶积都是基于各种假设,例如假设子波是高频的或者假设反射系数是白噪序列的等,与实际情况也相差较多,而时变分频反褶积充分考虑了地震资料不同时窗地震子波频率不同的特点,反射系数更符合实际情况,具有更高的可控性,形成了具有多分辨率性质的地震资料反褶积算法。时变分频反褶积的实现步骤如下。

第一步,分时窗。将已有的地震资料主频作为理论子波的主频,根据标志层确定时间分界点来等间隔划分地震合成记录,完成分频。

第二步,提取时变子波。基于广义S变换[14]对式(1)进行时频变换,则其对应的频率域关系可表示为

X(t,f)=W(t,f)·R(t,f)

对式(6)两边同时求对数,有

lnX(t,f)=lnW(t,f)+lnR(t,f)

利用CEEMD提取时变子波振幅谱[15]。当子波是零相位时,可以直接由地震记录的振幅谱得到子波的频谱,再由傅里叶反变换得到子波的时间域形式。当子波为最小相位时,可以由希尔伯特变换法得到相位谱,记子波的振幅谱为A(ω),待求的相位谱为φ(ω),则有

φ(ω)=-lnA(ω)*1πω

也可以用Wold-Kolmogorov公式得到最小相位谱,然后与子波振幅谱组合,再通过傅里叶反变换得到最小相位子波[16-17]。利用极零点模型描述最小相位子波z域的系统函数:

H(t,z)=j=0nbt,jz-j1+i=1mat,iz-i,

式中:ab为待估计参数;mn为模型的阶次。当分子和分母分别为零时,就可以估计最小相位子波z域的极零点;再根据不同相位特征的子波极零点分布的规律及差异,对最小相位子波的极零点关于单位圆进行对称变换,并在局部相似度准则的约束下确定最优组合,实现时变混合相位子波的准确提取[18]

第三步,得到时变子波后,要在每一时窗内利用对应地震子波进行反褶积,求取反射系数。W为时间域的子波矩阵:

W=w0,0w0,1w0,l000w1,-1w1,0w1,l-1w1,l00wl,-lwl,-l+1wl,0wl,10000wM-l+1,-lwM-l+1,0wM-l+1,l-1wM-l+1,l00wM-1,-lwM-1,-l+1wM-1,0wM-1,1000wM,-lwM,-1wM,1,

褶积转换成矩阵形式即Wr=x(t)[19]

最后一步,进行子波重构。当子波为零相位时,频率域地震子波为

W(f)=A(f),

式中:A(f)为频率域子波振幅谱。对式(11)进行反傅里叶变换:

w(t)=-+W(f)ei2πftdf,

即不同时窗的不同反射系数分别褶积高频率子波、低频率子波,得到宽频地震信号。

在实际数据处理过程中,可以针对实际地震数据的主频趋势,选取合适大小的时窗来提取子波,主动调整高、低频信号的反射系数比例,然后对每个频段的信息进行扩散过滤,提高同相轴的一致性;同时去噪,得到信噪比高且高、低频输出好的数据体,并以此作为约束来进行反褶积,得到一个频率增强的剖面,然后进行线性求和,获得提频后的剖面。

2 模型正演

对比预测反褶积和时变分频反褶积两种提频方法的合理性和对薄层的识别能力,根据W278块的实际情况设计正演模型。该区有利砂体的厚度大部分在10 m以下。因此,设计一个楔状的地质模型(图1a):泥岩背景中发育砂体,砂岩夹层最厚处为150 m,砂岩的速度和密度分别为3 600 m/s和2.6 g/cm3,泥岩的速度和密度分别为2 800 m/s和2.2 g/cm3。依据该区实际地震主频为28 Hz,设计利用主频为30 Hz的雷克子波,采用波动方程正演得到地震记录(图1b)。图中显示:在λ2=46.7m处,上线界面振幅较均匀,没有明显变化,可以清晰识别出该地层;在λ2~λ4之间的地层,横轴与第一条斜轴上下界面反射波发生干涉,随着下界面振幅消失,再无法识别更薄的地层,所以在30 Hz的主频时,能够识别的最薄砂岩厚度约为λ4=23.3m,无法满足实际工区对薄层识别的要求,第二条斜轴为多次波反射。频谱(图1c)显示,提频前地震数据频带带宽为12~48 Hz,有效频带宽度为36 Hz,主频为28 Hz。

图1

图1   地质模型及其正演结果

Fig.1   Geological model and its forward modeling results


图1b分别用预测反褶积和时变分频反褶积进行提频分析。预测反褶积的主要参数设置为:预测步长3,算子长度20,白噪系数0.1%,使用静态子波。进行时变分频反褶积提频需要提取时变子波,图2为对正演数据提取的不同时窗的子波图。在地震波传播过程中,随着时间的推移,地震子波的主频会降低,波形也会变得更长,此外,地震记录中的高频成分会更快地衰减。这些特点即动态子波的非稳态特征,与稳态子波有所不同。由于模拟实验数据量较小,因此本次试验选取时窗较小,但实际地震数据往往较大,所以选取时窗也要随之扩大,一般要使时窗顶底尽量在相对稳定的地方。

图2

图2   对比正演模型的不同时窗的子波

Fig.2   Sub-wave diagrams for different time windows comparing the forward model


图3给出了提频后的剖面图及频谱图,其中图3ab为不同方法提频剖面,图中下方的斜轴是多次波反射造成的干扰。从地震提频剖面上看,预测反褶积和时变分频反褶积在地震剖面的下界面振幅消失处都更加靠近楔形的顶端,说明两者相较于提频前均能识别的地层厚度更薄。图3a是采用预测反褶积的提频结果,横轴与第一个斜轴横轴上下界面反射波发生干涉处为λ4=16.7m,所以预测反褶积能够识别的砂体厚度在16.7 m处,无法满足对薄层识别的要求。图3b是采用时变分频反褶积的提频结果,能识别的厚度为横轴与第一个斜轴横轴上下界面反射波发生干涉处,即λ4=8.9m处,满足识别薄砂体的要求;相对于提频前,预测反褶积薄砂体识别能力提高约28%,时变分频反褶积薄砂体识别能力提高约62%,时变分频反褶积识别薄砂体优势更大。从频谱对比(图3cd)看,常规预测反褶积得到的地震数据频带为10~60 Hz,有效频带宽度为50 Hz,主频在42 Hz;时变分频反褶积提频试验后的地震数据频带拓宽至10~148 Hz,有效带宽为138 Hz,主频在78 Hz。相对于提频前,预测反褶积技术在提频后的有效带宽扩展了1.4倍,主频增加了1.4倍,而时变分频反褶积技术在提频后的有效带宽大约是提频前的3.8倍,主频大约是提频前的2.5倍。由此说明相比于常规的预测反褶积,时变分频反褶积可以更好地处理薄层数据。

图3

图3   预测反褶积与时变分频反褶积提频后地震剖面及频谱

Fig.3   Comparison of seismic profiles and spectra after frequency boosting of predicted anti-fold product and time-varying fractional anti-fold product


通过提频试验,验证了时变分频反褶积技术在识别薄层方面更有优势,在频谱图上也有更好的效果。

3 实际资料提频

研究区W278内部构造复杂,砂体厚度大多较薄,统计分析该地区单砂体数据,可以发现单砂体厚度介于0.2~11.3 m之间,整体较薄,河道砂岩厚度大部分介于5~10 m之间,油层厚度普遍小于4 m。现有地震数据的频率不能满足薄层预测需求,导致下一步的勘探开发潜力降低,所以对W278地区实际地震资料利用时变分频反褶积技术进行提频,结果见图4。从地震剖面上(图4ab)明显可以看出:提频后能够识别出更多的薄层。从频谱对比分析(图4cd)看,本工区提频前的地震数据频带为3~48 Hz,有效频带带宽为45 Hz,主频为22 Hz,分辨率较低;提频后的地震数据频带拓宽至6~102 Hz,有效频带宽度为96 Hz,主频为45 Hz。有效带宽和主频提高了近一倍,地震分辨率得到较大提高。

图4

图4   时变分频反褶积提频前后地震剖面及频谱

Fig.4   Comparison of Seismic profile and spectrum diagram before and after the frequency increase of time-varying fractional inverse fold product and comparison of spectrograms


图5给出了原始地震剖面与进行时变分频反褶积技术提频后的地震剖面的细节。与原始地震数据相比,提频后地震剖面中的薄互层得到了很好识别(图5a中红色线圈),砂体连续性更好,对单砂体的刻画能力有较大提高,解决了之前薄层识别方面存在的问题。提频前W79-162井在S2x4层附近的单砂体的顶底反射界面不明显,顶底都在波谷处;提频后砂体顶部在弱波峰,底部在强波谷处,分辨率提高,识别出13 m薄层(图5b),说明解决了薄层预测的问题。

图5

图5   时变分频反褶积提频前后地震剖面的细节对比

Fig.5   Comparison of seismic profiles before and after the frequency increase of time-varying fractional inverse fold product


提取过S2x4的时间切片(图6),可以看出时间分辨率有较大改善,同相轴变化细节更清晰。在图中线号4020,道号5570处(蓝色箭头所示),提频前识别不出不连续性,提频后可见明显的不连续;图中黄色虚线所示处,提频前识别不出断层,提频后能明显识别出断层:说明时变分频反褶积不仅在纵向上提高了对地质体的分辨能力,还在横向上提高了对不连续性边界的分辨能力。

图6

图6   时变分频反褶积提频前后时间切片对比

Fig.6   Comparison of time slices before and after the time-varying frequency division inverse fold product frequency boost


综上,利用时变分频反褶积实现了W278地区地震资料分辨率的有效提高,频带宽度与主频提高近一倍。相比于提频前,提频后的数据低频趋势较好,层间内幕反射清晰,且提高信噪比,提高了对薄层的预测能力。

4 结论

1)时变分频反褶积具有很好的适应性和稳定性,能够有效提高薄储层预测的分辨率。

2)相对于一般反褶积,时变分频反褶积的优点在于更加贴近实际子波频率,但同时也伴随着过分增加反射系数高、低频信号的比重导致失真的风险。因此,应用该方法时需要结合时变子波的特性,确保其稳定性、保真和保幅性。

参考文献

刁瑞.

分频带预测反褶积方法研究

[J]. 断块油气田, 2015, 22(1):53-57.

[本文引用: 1]

Diao R.

Method of separate frequency predictive deconvolution

[J]. Fault-Block Oil & Gas Field, 2015, 22(1):53-57.

[本文引用: 1]

刘俊, 吴淑玉, 高金耀, .

南黄海中部浅水区多次波衰减技术及其效果分析

[J]. 物探与化探, 2016, 40(3):568-577.

[本文引用: 1]

Liu J, Wu S Y, Gao J Y, et al.

An effectiveness analysis of multiple depression technique in the Shallow water of the central uplift in South Yellow Sea

[J]. Geophysical and Geochemical Exploration, 2016, 40(3):568-577.

[本文引用: 1]

朱恒, 文晓涛, 金炜龙, .

基于反褶积短时傅立叶变换的油气检测

[J]. 地球物理学进展, 2015, 30(5):2354-2359.

[本文引用: 1]

Zhu H, Wen X T, Jin W L, et al.

Oil and gas detection based on deconvolutive short-time Fourier transform

[J]. Progress in Geophysics, 2015, 30(5):2354-2359.

[本文引用: 1]

徐倩茹, 孙成禹, 乔志浩, .

基于Gabor变换的地震资料高分辨率处理方法研究

[J]. 断块油气田, 2016, 23(4):460-464.

[本文引用: 1]

Xu Q R, Sun C Y, Qiao Z H, et al.

High-resolution processing method of seismic data based on Gabor transform

[J]. Fault-Block Oil & Gas Field, 2016, 23(4):460-464.

[本文引用: 1]

Morlet J, Arens G, Fourgeau E, et al.

Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media

[J]. Geophysics, 1982, 47(2):203-203.

DOI:10.1190/1.1441328      URL     [本文引用: 1]

From experimental studies in digital processing of seismic reflection data, geophysicists know that a seismic signal does vary in amplitude, shape, frequency and phase, versus propagation time. To enhance the resolution of the seismic reflection method, we must investigate these variations in more detail. We present quantitative results of theoretical studies on propagation of plane waves for normal incidence, through perfectly elastic multilayered media. As wavelet shapes, we use zero‐phase cosine wavelets modulated by a Gaussian envelope and the corresponding complex wavelets. A finite set of such wavelets, for an appropriate sampling of the frequency domain, may be taken as the basic wavelets for a Gabor expansion of any signal or trace in a two‐dimensional (2-D) domain (time and frequency). We can then compute the wave propagation using complex functions and thereby obtain quantitative results including energy and phase of the propagating signals. These results appear as complex 2-D functions of time and frequency, i.e., as “instantaneous frequency spectra.” Choosing a constant sampling rate on the logarithmic scale in the frequency domain leads to an appropriate sampling method for phase preservation of the complex signals or traces. For this purpose, we developed a Gabor expansion involving basic wavelets with a constant time duration/mean period ratio. For layered media, as found in sedimentary basins, we can distinguish two main types of series: (1) progressive series, and (2) cyclic or quasi‐cyclic series. The second type is of high interest in hydrocarbon exploration. Progressive series do not involve noticeable distortions of the seismic signal. We studied, therefore, the wave propagation in cyclic series and, first, simple models made up of two components (binary media). Such periodic structures have a spatial period. We present synthetic traces computed in the time domain using the Goupillaud‐Kunetz model of propagation for one‐dimensional (1-D) synthetic seismograms. Three different cases appear for signal scattering, depending upon the value of the ratio wavelength of the signal/spatial period of the medium. (1) Large wavelengths The composite medium is fully transparent, but phase delaying. It acts like an homogeneous medium, with an “effective velocity” and an “effective impedance.” (2) Short wavelengths For wavelengths close to twice the spatial period of the medium, the composite medium strongly attenuates the transmission, and superreflectivity occurs as counterpart. (3) Intermediate wavelengths For intermediate values of the frequency, velocity dispersion versus frequency appears. All these phenomena are studied in the frequency domain, by analytic formulation of the transfer functions of the composite media for transmission and reflection. Such phenomena are similar to Bloch waves in crystal lattices as studied in solid state physics, with only a difference in scale, and we checked their conformity with laboratory measurements. Such models give us an easy way to introduce the use of effective velocities and impedances which are frequency dependent, i.e., complex. They will be helpful for further developments of “complex deconvolution.” The above results can be extended to quasi‐cyclic media made up of a random distribution of double layers. For signal transmission, quasi‐cyclic series act as a high cut filter with possible time delay, velocity dispersion, and “constant Q” type of law for attenuation. For signal reflection they act as a low cut filter, with possible superreflections. These studies could be extended to three‐dimensional (3-D) binary models (grains and pores in a porous reservoir), in agreement with well‐known acoustic properties of gas reservoirs (theory of bright spots). We present some applications to real well data.

王西文, 刘全新, 高静怀, .

地震资料在小波域的分频处理与重构

[J]. 石油地球物理勘探, 2001, 36(1):78-85.

[本文引用: 1]

Wang X W, Liu Q X, Gao J H, et al.

Frequency-shared processing and reconstitution of seismic data in wavelet domain

[J]. Oil Geophysical Prospecting, 2001, 36(1):78-85.

[本文引用: 1]

李雨青, 水鹏朗, 林英.

基于多谱图叠加阈值的抑制WVD交叉项的新方法

[J]. 电子与信息学报, 2006, 28(8):1435-1438.

[本文引用: 1]

Li Y Q, Shui P L, Lin Y.

New method to suppress cross-terms of WVD via thresholding superimposition of multiple spectrograms

[J]. Journal of Electronics & Information Technology, 2006, 28(8):1435-1438.

[本文引用: 1]

李合群, 孟小红, 赵波.

地震数据Q吸收补偿应用研究

[J]. 石油地球物理勘探, 2010, 45(2):190-195.

[本文引用: 1]

Li H Q, Meng X H, Zhao B.

Application studies on Q absorption and compensation for seismic data

[J]. Oil Geophysical Prospecting, 2010, 45(2):190-195.

[本文引用: 1]

Wang Y H.

A stable and efficient approach of inverse Q filtering

[J]. Geophysics, 2002, 67(2): 657-663.

DOI:10.1190/1.1468627      URL     [本文引用: 1]

Stability and efficiency are two issues of general concern in inverse Q filtering. This paper presents a stable, efficient approach to inverse Q filtering, based on the theory of wavefield downward continuation. It is implemented in a layered manner, assuming a depth‐dependent, layered‐earth Q model. For each individual constant Q layer, the seismic wavefield recorded at the surface is first extrapolated down to the top of the current layer and a constant Q inverse filter is then applied to the current layer. When extrapolating within the overburden, instead of applying wavefield downward continuation directly, a reversed, upward continuation system is solved to obtain a stabilized solution. Within the current constant Q layer, the amplitude compensation operator, which is a 2‐D function of traveltime and frequency, is approximated optimally as the product of two 1‐D functions depending, respectively, on time and frequency. The constant Q inverse filter that compensates simultaneously for phase and amplitude effects is then implemented efficiently in the Fourier domain.

王珊, 于承业, 王云专, .

稳定有效的反Q滤波方法

[J]. 物探与化探, 2009, 33(6):696-699.

[本文引用: 1]

Wang S, Yu C Y, Wang Y Z, et al.

Researches on stabilized and effective inverse Q filtering

[J]. Geophysical and Geochemical Exploration, 2009, 33(6):696-699.

[本文引用: 1]

Stockwell R G, Mansinha L, Lowe R.

Localization of the complex spectrum: The S transform

[J]. IEEE Transactions on Signal Processing, 1996, 44(4):98-1001.

[本文引用: 1]

杜斌山, 雍学善, 王建功, .

测井约束下高精度叠前地震速度预测

[J]. 岩性油气藏, 2019, 31(4):92-100.

[本文引用: 1]

Du B S, Yong X S, Wang J G, et al.

High precision prestack seismic velocity prediction based on well logging constraint

[J]. Lithologic Reservoirs, 2019, 31(4):92-100.

[本文引用: 1]

杨培杰, 印兴耀.

地震子波提取方法综述

[J]. 石油地球物理勘探, 2008, 43(1):123-128.

[本文引用: 1]

Yang P J, Yin X Y.

Summary of seismic wavelet pick-up

[J]. Oil Geophysical Prospecting, 2008, 43(1):123-128.

[本文引用: 1]

蔡剑华, 肖永良.

基于广义S变换时频滤波的MT数据去噪

[J]. 地质与勘探, 2021, 57(6):1383-1390.

[本文引用: 1]

Cai J H, Xiao Y L.

Denoising of MT data by time-frequency filtering based on the generalized S transform

[J]. Geology and Exploration, 2021, 57(6):1383-1390.

[本文引用: 1]

Yeh J R, Shieh J S, Huang N E.

Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method

[J]. Advances in Adaptive Data Analysis, 2010, 2(2):135-156.

DOI:10.1142/S1793536910000422      URL     [本文引用: 1]

The phenomenon of mode-mixing caused by intermittence signals is an annoying problem in Empirical Mode Decomposition (EMD) method. The noise assisted method of Ensemble EMD (EEMD) has not only effectively resolved this problem but also generated a new one, which tolerates the residue noise in the signal reconstruction. Of course, the relative magnitude of the residue noise could be reduced with large enough ensemble, it would be too time consuming to implement. An improved algorithm of noise enhanced data analysis method is suggested in this paper. In this approach, the residue of added white noises can be extracted from the mixtures of data and white noises via pairs of complementary ensemble IMFs with positive and negative added white noises. Though this new approach yields IMF with the similar RMS noise as EEMD, it effectively eliminated residue noise in the IMFs. Numerical experiments were conducted to demonstrate the new approach and also illustrate the problems of mode splitting and translation.

李振春, 张军华. 地震数据处理方法[M]. 东营: 中国石油大学出版社, 2004.

[本文引用: 1]

Li Z C, Zhang J H. Seismic data processing method[M]. Dongying: China University of Petroleum Press, 2004.

[本文引用: 1]

Leinbach J.

Wiener spiking deconvolution and minimum-phase wavelets: A tutorial

[J]. The Leading Edge, 1995, 14(3):189-192.

DOI:10.1190/1.1437110      URL     [本文引用: 1]

Zhang P, Dai Y S, Zhang H Q, et al.

Combining CEEMD and recursive least square for the extraction of time-varying seismic wavelets

[J]. Journal of Applied Geophysics, 2019, 170(6):103854.

DOI:10.1016/j.jappgeo.2019.103854      URL     [本文引用: 1]

陈学华, 贺振华, 黄德济.

广义S变换及其时频滤波

[J]. 信号处理, 2008, 24(1):28-31.

[本文引用: 1]

Chen X H, He Z H, Huang D J.

Generalized S transform and its time-frequency filtering

[J]. Journal of Signal Processing, 2008, 24(1):28-31.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com