基于可逆叠加变换的地滚波压制技术
Ground roll suppression based on invertible superposition transformation
责任编辑: 叶佩
收稿日期: 2022-08-15 修回日期: 2023-09-26
基金资助: |
|
Received: 2022-08-15 Revised: 2023-09-26
作者简介 About authors
吴玉(1988-),男,博士,研究方向为地震资料复杂噪声压制技术研发。Email:
地滚波是一种常见规则干扰,具有低频、低速、强能量、频散的特征,由于地滚波和有效波在频带、传播方向、速度等方面存在重叠,导致变换域滤波方法很难取得理想的效果。目前,工业界主流的地滚波压制技术是预测+匹配相减,由于近地表复杂的波场传播过程,直接对地滚波进行预测建模通常很困难并且精度有限。本文提出了一种基于可逆叠加变换的地滚波压制新技术,通过叠加算子对CMP域反射波进行建模,构建一个反射波估计的反问题,使用最优化方法求解此反问题,相当于把地震数据向反射波空间投影。由于地滚波和反射波处在不同的空间,通过投影能够得到干净的反射波数据。为了降低地滚波对反演结果的影响,本文进一步引入数据预条件算子减少地滚波的泄露,能够得到更好的噪声压制效果。
关键词:
Ground roll is a type of common regular noise and features low frequency,low velocity,strong energy,and dispersion.It overlaps with effective waves in terms of frequency bands,propagation direction,and velocity,making the transform-domain filtering methods fail to yield desired denoising results.At present,prediction plus matched subtraction is the mainstream ground roll suppression technique in the industry.However,direct predictive modeling of the ground roll is often difficult and of limited accuracy due to the complex wavefield propagation process near the surface.This study proposed a new ground roll suppression technique based on invertible superposition transformation.The main approach is as follows:first,the reflected waves can be modeled using a superposition operator in the CMP domain to construct an inverse problem for reflected wave estimation.Then the inverse problem is solved using an optimization method.The whole process is equivalent to the projection of seismic data to the reflection space.Since ground roll and reflection waves reside in different spaces,clean reflected wave data can be obtained through projection.To reduce the influence of ground roll on inversion results,this study used a data preconditioner to reduce the leakage of ground roll,achieving effective noise suppression effects.
Keywords:
本文引用格式
吴玉.
WU Yu.
0 引言
地滚波是陆上地震资料中常见的一种干扰波类型,具有低频、低速、强能量、频散的特征,在单炮地震记录上呈扇形分布[1]。地滚波严重降低了陆上地震资料的品质,常规处理流程很难对其进行有效压制,残留的地滚波会在成像剖面上形成假象,干扰地震剖面(尤其是深层地震资料)的解释。有效压制地滚波是陆上资料处理的一个重要环节,是提高信噪比的重要手段。
工业界通常在采集阶段通过检波器组合压制地滚波[2]。然而,经过检波器组合后,还会有大量的地滚波残余,需要通过相应的处理技术进行压制。根据地滚波低频的特征,李文杰等[3]提出针对不同的炮检距选用不同的低切频高通滤波压制地滚波。利用地滚波低速的特征,石颖等[4]提出在十字交叉域通过三维FK滤波进行地滚波压制。地滚波存在速度频散,具有非稳态特征,通过小波变换可以在小波域设计一种时变、空变的自适应地滚波衰减方法,相比高通滤波,可以在衰减噪声的同时更好地保持反射波的振幅和相位信息[5⇓-7]。通过小波变换可以把时间域地震数据变换到时间—尺度域,由于尺度缺乏物理含义,在尺度域设计滤波器比较困难,有学者提出通过S变换把地震数据变换到时频域进行噪声压制[8⇓-10]。相比S变换,曲波变换由于其基函数具有多尺度和多方向的特征,更适合地震数据的表达,通过曲波变换对地震数据进行分解,在曲波域进行滤波是一种有效的地滚波压制技术[11⇓-13]。
本文提出一种压制地滚波的新思路:在CMP域,反射波的同相轴为一系列双曲线,这些双曲线的顶点位于零偏移距位置,叠加速度能够唯一地表示这些双曲线的曲率。因此,可以通过叠加速度分析获取相对应的参数。对反射信号进行建模,求解对应的反问题获取零偏移距地震数据时,为了达到压制地滚波的目的,需要引入数据预条件算子消除地滚波对反演结果的影响。最后,由零偏移地震数据通过正演得到整个CMP剖面,由于正演算子不含地滚波的影响,最后得到的是干净的反射波数据,实现了衰减地滚波的目的。
1 可逆叠加变换反射波建模技术
1.1 正演算子
正演算子可以抽象表示为
式中:d表示数据向量,是一个m维向量;m表示模型向量,是一个n维向量;L表示正演算子,是一个大小为m×n维的矩阵,作用是实现从数据域到模型域的映射。式(1)表示的是线性模型,正演算子不依赖于模型向量,但是正演算子的构建需要提供相应的参数信息,通常包括背景速度、子波、观测系统等信息。
本文研究的正问题是通过叠加道合成相应的CMP道集,与常规NMO叠加的映射方向相反,二者互为共轭转置关系,可以通过NMO叠加算子间接构建正演算子L。NMO叠加包括两个过程:动校正与叠加,可以抽象表示为
式中:N表示动校正;S表示叠加算子。因此正演算子可以表示为
图1
图1
层状介质模型
a—层速度;b—均方根速度
Fig.1
Layered velocity model
a—layer velocity;b—RMS velocity
图2
图2
叠加算子的转置
a—叠加道;b—零偏移距剖面
Fig.2
Transpose of stack operator
a—stacked trace;b—zero offset section
图3
1.2 共轭算子
1.1节实现了叠加道到CMP道集的映射,但是,实际中经常求解的是对应的反问题,即如何通过CMP道集,估计相应的叠加道。反问题求解有两个关键:①共轭算子的构建;②最优化算法的实施。本节讨论共轭算子的构建,并进行相应的点积测试。正演算子的共轭就是常规的NMO叠加算子:
图4
共轭算子的共轭性对后续反演求解的精度影响很大,需要通过点积测试验证共轭算子的精度。如果共轭算子是准确的,则下式成立:
式中:<,>表示两个向量的内积;m是一个随机的模型向量。输入一个随机的模型向量,使用本文方法计算的式(5)左边与右边的相对误差为10-16,在机器精度范围内,可以认为二者相等,表明本文提出的共轭算子可以满足反演对共轭性的要求。
1.3 可逆映射
为了实现模型域和数据域之间的可逆映射,需要把模型向量的估计表达为一个反演问题:
式中:‖‖2表示L2范数。通过最优化算法求解式(6),即可实现数据d和模型m之间的可逆映射。
本文通过共轭梯度法求解式(6),其中目标泛函关于模型向量的梯度可以表示为
图5
2 基于反演的地滚波压制技术
2.1 信号噪声模型
在CMP域,地震数据可以表示为信号和噪声之和:
图6
图7
2.2 数据预条件反演压制地滚波
如果引入额外的约束,对式(8)所示的信号模型很难进行处理。因此,根据前文的叙述,可以对反射信号进行建模约束,式(8)可以表示为
通过对式(9)进行反演,可以得到模型m,进而可以通过正演得到反射波。但在实际中,由于地滚波n的存在,导致估计的模型m存在地滚波的干扰,很难达到理想的去噪效果。
由于地滚波的传播速度较低,能量被局限在近偏移距范围,见图6。在近偏移距信噪比较低,为了降低低信噪比数据对反射波估计的影响,设计一个MASK矩阵,降低这部分数据的权重,加权矩阵可以设置为
式中:v=
通过引入MASK矩阵作为数据预条件算子解决地滚波对反演的干扰,引入预条件后,式(9)变为
式中:T表示数据预条件算子,见图8,黄色表示1,蓝色表示0。由于Tn近似等于0,因此可以降低地滚波对反演结果的影响。
图8
图9
3 实际资料测试
为了测试本文算法在实际资料上的应用效果,选取西部某工区的陆上地震资料(图10)。通过对比,地滚波被有效压制,去除的噪声看不到有效信号的泄露,说明本文方法可以在压噪的同时尽可能保护有效信号,这非常有利于弱信号的保护。
图10
图10
西部某工区陆上地震资料去噪效果
a—实际数据;b—去噪结果;c—去除的噪声
Fig.10
The denoising effect of onshore seismic data in a certain work area in the west
a—real data;b—denoised result;c—noise section
4 结论与认识
本文提出的基于可逆叠加算子的地滚波压制技术,算法噪声压制彻底,保幅性好,去掉的噪声几乎不含有效反射信号,数值算例证明了算法的有效性。但是,该方法基于层状介质假设,对于弱横向变化介质,噪声压制效果好,当速度存在比较大的横向变化,CMP叠加算子对反射波的建模能力降低,可能导致去噪效果变差,还需要结合实际资料开展进一步的研究工作。
参考文献
基于地震信号波形形态差异的面波噪声稀疏优化分离方法
[J].
Sparsity optimized separation of Ground-roll noise based on morphological diversity of seismic waveform components
[J].
基于频率衰减特性的面波压制方法
[J].在地震资料常规处理过程中,通常在整个地震记录上进行高通滤波来消除低频面波,而很少考虑面波的频率衰减特性。这种方法的缺点在于压制面波的同时,地震记录上有效的低频信号也受到压制。为了克服常规压制面波方法的缺点,提出了一种新的衰减面波的处理方法:在地震记录上确定面波带,然后针对不同的炮检距选用不同的低切频在面波带里进行高通滤波。通过这样的处理,既可以保证面波的压制仅在面波带里进行,又可以较准确地确定不同炮检距的面波频率范围,从而有效地衰减了面波带里的面波能量,较好地保存了地震记录上的有效低频反射波成分
A method for suppressing surface wave by considering the characteristic of frequency attenuation
[J].In seismic data process using conventional method, high pass filtering is usually carried out on seismic record to attenuate the low frequency surface wave without taking the characteristic of frequency attenuation into consideration. The conventional method has the disadvantage of suppressing effective low-frequency signals as well as surface wave. Aiming at this problem, a new method for attenuating surface wave was proposed, whose principles are that 1) the surface wave band is determined on seismic record, and 2) different low-cut frequencies are selected for high pass filtering in surface wave band with different offsets. Through the processing, surface wave attenuation can be surely carried out in surface wave band and can accurately identify the surface wave frequency range for different offsets. So, the energy of surface wave can be attenuated in surface wave band, and the effective low-frequency reflection waves can be well preserved.
十字交叉排列面波压制方法及应用
[J].
Surface wave suppressing and application based on cross-spread approach
[J].
Ground-roll suppression using the wavelet transform
[J].
DOI:10.1190/1.1444290
URL
[本文引用: 1]
Low‐frequency, high‐amplitude ground roll is an old problem in land‐based seismic field records. Current processing techniques aimed at ground‐roll suppression, such as frequency filtering, f-k filtering, and f-k filtering with time‐offset windowing, use the Fourier transform, a technique that assumes that the basic seismic signal is stationary. A new alternative to the Fourier transform is the wavelet transform, which decomposes a function using basis functions that, unlike the Fourier transform, have finite extent in both frequency and time. Application of a filter based on the wavelet transform to land seismic shot records suppresses ground roll in a time‐frequency sense; unlike the Fourier filter, this filter does not assume that the signal is stationary. The wavelet transform technique also allows more effective time‐frequency analysis and filtering than current processing techniques and can be implemented using an algorithm as computationally efficient as the fast Fourier transform. This new filtering technique leads to the improvement of shot records and considerably improves the final stack quality.
二维小波变换在地震勘探面波消除中的应用
[J].
Apply of 2-D wavelet transforms in surface wave eliminations of seismic exploration
[J].
基于连续小波变换的自适应面波压制方法
[J].
Adaptive attenuation of ground roll via continuous wavelet transform
[J].
基于S变换的面波压制技术
[J].
Surface wave suppression technology based on S-transform
[J].
Ground roll attenuation using the S and x-f-k transforms
[J].DOI:10.1111/gpr.2008.56.issue-1 URL [本文引用: 1]
基于含可变因子S变换的面波压制技术
[J].
Surface wave suppression technology based on S-transform with variable factor
[J].
Curvelet-based ground roll removal
[C]//
第二代Curvelet变换压制面波方法
[J].
Ground-roll suppression based on the second generation Curvelet transform
[J].
基于面波模拟和曲波变换的去噪技术
[J].
Seismic denoising technique based on surface wave modeling and Curvelet transform
[J].
Surface waves:Processing,inversion and removal
[J].
Surface waves:Use them then lose them.Surface-wave analysis,inversion and attenuation in land reflection seismic surveying
[J].
DOI:10.3997/1873-0604.2011022
URL
[本文引用: 1]
While in other domains of applied geophysics the surface‐wave is considered a source of information for near‐surface characterization, in the seismic industry the so‐called ground roll has been traditionally regarded only as coherent noise to be filtered out as soon as possible. This difference of perspective is mainly due to the limitations of conventional land acquisition. The Rayleigh waves, which constitute a large part of the recorded energy, can be acquired properly, analysed and inverted to characterize the near‐surface with a surprisingly high resolution, even in large 3D surveys, with point receiver acquisition. Surface waves can play a new role: they contribute to a better near‐surface characterization for the perturbation correction and can be used for velocity modelling and geological modelling. Their proper identification enables alternative filtering strategies. Surface waves are not coherent noise but a signal that can be lifted from the seismic record and exploited in a variety of well‐established geophysical solutions. In this paper we discuss a workflow for the analysis, inversion and attenuation of surface waves with 3D land data, showing examples from a land 3D survey in Egypt.
Attenuation of aliased coherent noise:Modelbased attenuation for complex dispersive waves
[J].
Model-based attenuation for scattered dispersive waves
[J].DOI:10.1111/gpr.2014.62.issue-5 URL [本文引用: 1]
Interferometric surface-wave isolation and removal
[J].
Interferometric ground-roll removal:Attenuation of scattered surface waves in single-sensor data
[J].
/
〈 |
|
〉 |
