山区地形改正密度逐次回归选取方法
Successive regression for determining the optimum terrain correction density in mountainous areas
通讯作者: 冯旭亮(1989-),男,博士,讲师,硕士生导师,主要从事重、磁勘探方法理论与应用及综合地球物理勘探研究工作。Email:fxlchd@163.com
责任编辑: 王萌
收稿日期: 2021-05-24 修回日期: 2021-06-3
基金资助: |
|
Received: 2021-05-24 Revised: 2021-06-3
作者简介 About authors
高维强(1988-),男,硕士,毕业于中国地质大学(武汉),主要从事电磁法和重力工作。Email:
在山区进行重力测量时,布格重力异常往往与地形呈现相关关系,不利于重力资料的地质解释,这一现象主要是由地形改正密度选择不准确引起的。本文利用回归分析方法来选取山区地形改正密度,其利用自由空间重力异常与测点高程的相关关系获取地形改正密度,并利用每一次计算得到的布格重力异常与测点高程的相关关系得到地形改正密度的调整值。逐次调整地形改正密度,直至获得最佳的地形改正密度和与地形无关的布格重力异常。将该方法用于九嵕山地区实测重力数据校正,经过5次迭代获得了最佳地形改正密度,并由此计算得到了布格重力异常。布格重力异常与地形的相关分析结果证明了该方法的正确性。
关键词:
Bouguer gravity anomaly is constantly correlated with terrain in mountainous areas, which is unserviceable to geological interpretation of gravity data. This phenomenon is mainly caused by inaccurate terrain correction density. We ascertain the terrain correction density in mountainous areas based on regression analysis. We obtain the terrain correction density by analyzing the relationship between the free-air gravity anomaly and the elevation, and modify the density according to the relationship between the calculated Bouguer gravity anomaly in each step and the elevation. Based on this, we adjust the terrain correction density of topographic correction successively until we obtain the optimum terrain correction density and the corresponding Bouguer gravity anomaly. We have adopted the proposed method for the terrain correction of the gravity data in the Jiuzongshan mountain and obtained the optimum terrain correction density after 5 iterations, and thus the Bouguer gravity anomaly was calculated. The results of Jiuzhongshan mountain confirmed the correctness of our proposed method.
Keywords:
本文引用格式
高维强, 史朝洋, 张利明, 冯旭亮.
GAO Wei-Qiang, SHI Zhao-Yang, ZHANG Li-Ming, FENG Xu-Liang.
0 引言
相关分析法是选取最佳中间层密度的传统方法,一般在重力剖面上选用一系列中间层密度值进行校正,选用与地形无关或最小相关的布格重力异常值对应的密度值作为最佳中间层密度[8,9]。在同一测区,如果表层密度较为均匀,则图解剖面法是有效的[10],否则图解法所求密度只是剖面位置处的合适密度,不能代表整个测区密度[10,11],可对全区地改后的布格重力异常与地形高程进行相关分析,选取相关性最小的地层密度作为最佳地改密度[11]。当地表密度横向变化较大时,可分区选用最佳密度值并拼接形成全区变化的中间层密度[12],也可在常密度改正结果的基础上进行补偿校正[13,14,15]。然而,当研究区面积较大且需要分区计算时,计算量较大,并且只能得到与最佳中间层密度最为接近的密度而并非最“真实”的密度。
1 研究区概况
九嵕山位于鄂尔多斯盆地南缘,西邻祁连—河西走廊(六盘山)—贺兰山构造带,南隔渭河地堑与秦岭造山带相依,地处稳定的鄂尔多斯地块与活动的祁连—秦岭造山带之间(图1),具有长期复杂的地质构造背景。研究区一带位于鄂尔多斯南缘翘起带,为一强烈的近东西向褶皱带,总体构造形态为一复背斜。次级背、向斜东西成带状展布,褶皱紧密,局部向南倒转,两翼断层多见。唐王陵向斜槽部为上奥陶统唐王陵组,南翼向北倾,350°-10°∠20°-30°,北翼向南倾,倾角较陡,一般产状为170°-190°∠50°-60°。由于北翼北断层破坏,地层出露不全,总体为一不对称向斜。
图1
图1
九嵕山及邻区无人机激光雷达测量的地形
Fig.1
The topographic map obtained by UAV LiDAR survey in Jiuzong mountain and its adjacent area
研究区位于唐王陵向斜的南翼,主要出露奥陶系唐王陵组,按岩性可分为两段:下段(O3t1)为杂色(黄褐、灰绿、紫红、深灰)含砾页岩,底部夹厚层状岩屑砂岩,并发育燧石条带白云岩大漂砾;上段(O3t2)为灰色、浅灰色巨厚层状复成分砾岩、角砾岩,偶夹砾屑砂岩,上下两段间为整合接触。
2 地球物理特征
图2
图3
表1 研究区各类岩石密度统计
Table 1
岩性 | 标本块数 | 密度变化范围/(103 kg·m-3) | 平均密度/(103 kg·m-3) |
---|---|---|---|
粉砂岩 | 15 | 2.574~2.815 | 2.676 |
复成分砾岩 | 9 | 2.637~2.783 | 2.704 |
砾岩 | 74 | 2.404~2.812 | 2.734 |
砂砾岩 | 8 | 2.706~2.820 | 2.773 |
杂色含泥砂质砾岩 | 9 | 2.559~2.714 | 2.659 |
杂色砾岩 | 7 | 2.749~2.812 | 2.771 |
紫红色砾岩 | 8 | 2.608~2.772 | 2.700 |
大理岩(嵕山玉) | 6 | 2.635~2.667 | 2.655 |
石英砂岩 | 2 | 2.775 | |
灰色含泥砂质砾岩 | 2 | 2.457 | |
灰色厚层状复成分砾岩 | 3 | 2.777 | |
白云岩 | 2 | 2.788 | |
灰岩 | 2 | 2.725 | |
泥质粉砂岩 | 3 | 2.648 | |
泥质砂质砾岩 | 2 | 2.631 | |
砂质页岩 | 1 | 2.727 | |
唐瓦 | 2 | 1.792 | |
唐砖 | 1 | 2.214 |
3 常规地形改正结果
自由空间重力异常经地形改正和中间层改正之后可得到布格重力异常。传统的做法是先将任一测点周围的地形“削平补齐”,然后利用布格板公式计算各测点与基点之间的无限大物质层的重力影响,即先做地形改正,再做中间层改正。在计算测点的地形改正值时,先计算测点附近4个节点的地形改正值,然后将4个节点的地形改正值内插到测点位置上来作为测点的地形改正值[21]。本文在进行地形改正时,根据实测的地形起伏直接计算地形在研究区各重力测点引起的重力变化,并从自由空间重力值中消除,得到布格重力异常。这一过程相当于将传统的地形改正和中间层改正合并为一项进行,简化了计算过程,并且避免了地形改正值内插的误差。因此,如不特别说明,本文中的地形改正均指的是传统的地形改正和中间层改正之和。
图4
图4
研究区由实测密度计算的地形影响值及相应的布格重力异常
Fig.4
The gravity effects caused by terrain calculated using the actual density and the corresponding Bouguer gravity anomaly
图4b所示的布格重力异常与地形呈镜像关系,即呈明显的山形异常,二者之间相关系数为-0.989,可见布格重力异常受地形的影响非常严重。从图4a来看,地形影响值变化形态与自由空间重力异常形态非常相似,二者的相关系数为0.996,但前者相对变化明显大于后者,其原因为利用实测数据建立的地形改正密度偏大。通过野外踏勘也发现,研究区地表岩石风化比较严重,导致岩石的实际等效密度远小于实测密度。图5为不同测点处地表岩石露头照片,可以看出岩石裂隙非常发育且不同位置裂隙规模差异较大,并且裂隙在纵向上延伸范围也比较大。此外,部分裂隙中充填了黄土,部分裂隙中无充填物。研究区各类岩石裂隙规模的变化及充填物的变化导致最佳地形改正密度无法利用实测岩石密度及裂隙的发育程度去估计,只能采用间接的方法,即根据实际地形与重力异常的关系进行估计。
图5
图5
研究区部分测点处地表露头俯视(a~e)和远景(f)照片
Fig.5
Photos of surface outcrop overlooking (a~e) and long-range (f) at some survey sites in the study area
4 逐次回归地形改正密度选取方法及应用
1)根据自由空间重力异常与高程的散点图,利用公式进行拟合,并计算第一次地形改正密度σ(1)=a/(1.6πG),其中G为万有引力常量。需要说明的是,由于三维条件下,实际地形引起的重力变化小于相同密度时布格板的重力异常,因此本文将布格板公式中的系数2πG改为1.6πG以加速迭代收敛过程。
2)以σ(1)为地形改正密度,正演计算地形在测点处的重力影响值gt(1),并根据gB(1)=gf-gt(1)计算布格重力异常。根据自由空间重力异常与第一次计算的地形在测点处的重力影响值的散点图,利用公式gf=c·gt(1)+d进行拟合,并根据系数c的大小判断:当c明显大于1时,说明计算的地形影响值偏小,地形改正密度σ(1)偏小,继续下一步骤;当c明显小于1时,说明计算的地形影响值偏大,地形改正密度σ(1)偏大,继续下一步骤;当c≈1时,说明地改密度σ(1)取值合适,此时停止迭代,将布格重力异常作为最终结果。
3)根据第一次计算得到的布格重力异常与高程的散点图,利用公式gB(1)=e·h+f进行拟合,计算第一次地形改正密度修正值δ(1)=e/(1.6πG)。
4)根据σ(2)=σ(1)+δσ(1)计算第二次地形改正密度,并令σ(1)=σ(2)转回步骤2)。
图6
图6
研究区自由空间重力异常与高程散点
Fig.6
Scatter points shown the relationship between free-air gravity anomaly and elevation in the researched area
图7
图7
研究区由第一次回归密度计算的地形影响值及相应的布格重力异常
Fig.7
The gravity effects caused by terrain calculated using the first regressed density and the corresponding Bouguer gravity anomaly
图8
图8
研究区自由空间重力异常与第一次计算的地形影响值散点
Fig.8
Scatter points shown the relationship between free-air gravity anomaly and gravity anomaly caused by terrain in the researched area
图9
图9
研究区第一次计算的布格重力异常与高程散点
Fig.9
Scatter points shown the relationship between first calculated Bouguer gravity anomaly and elevation in the researched area
图10
图10
密度及相关系数随迭代次数的变化
Fig.10
The variation of the density and the correlation coefficient along with the iteration
假设研究区地表岩石平均密度为2.7×103 kg/m3,则该最佳密度值近似于未风化岩石密度的80%,从地表岩石露头的裂隙发育来看,估算裂隙度10%~30%,考虑裂隙中存在部分黄土充填,因此本文估算的最佳地形改正密度应该是合理的。根据该密度计算的布格重力异常如图11a所示,其与地形的相关系数仅为0.0329,可见布格重力异常与地形完全无关。
图11
研究区有4个大小不等的石硐(位置如图11中黑色方框所示),尺寸约为4 m(宽)×3 m(高)×5.5 m(深),石硐顶距地表约8~10 m。若按照上述估算的中间层平均密度,则石硐与围岩的密度差为-2.154×103 kg/m3,正演计算4个石硐引起的重力异常,其为局部重力异常低,最大幅值可达-0.046×10-5 m/s2。利用位场分离方法求取剩余布格重力异常如图11b所示,4个石硐处表现为明显的局部重力异常低,相同参数下对图4b所示的布格重力异常求取的剩余异常则无法反映石硐的重力异常特征,且剩余重力异常走向与地形呈明显相关关系。可见,本文利用逐次回归方法得到的中间层密度较为合理,能较好地消除与地形无关的虚假异常。
5 讨论
本文根据自由空间重力异常与地形的相关关系,利用逐次回归方法确定了山区地形改正的密度,九嵕山地区的实测重力异常校正结果说明该方法的正确性。对于山区重力数据的地形改正问题,最常用的方法是选取一系列地形改正密度值进行试算,将与地形相关性最小的布格重力异常确定为最佳重力异常,对应的密度为最佳地改密度[11]。使用该方法时,密度间隔取值太小,计算量过大;反之密度间隔取值太大时,可能不能获取最佳地形改正密度。常用的选取方法是以0.05×103 kg/m3为步长进行计算,即便如此,若在(2.0~2.7)×103 kg/m3的范围内进行试算,也需15次地形改正计算,工作量非常大。在给定的区间内采用二分法选取密度值进行地形改正计算[10]能在一定程度上减小工作量,但若想得到较准确的最佳地改密度,仍然需要多次计算才行。而本文提出的方法只需有限的几次计算即可得到最佳地改密度,工作量较小。
九嵕山实测重力资料校正时,全区采用的统一的密度。其原因在于地表地质调查结果表明研究区出露的地层较为单一,可以用统一的密度去等效实际地层的密度变化。此外,自由空间重力异常与测点高程的回归分析结果可以较好地用线性函数拟合,也反映出该区地形改正密度无明显的横向变化。实际工作中,若测区面积较大,可利用自由空间重力异常与测点高程的散点图进行判断,若线性函数拟合误差较大,则可采用分区处理的方式,最终再将校正结果拼接即可。
本文将布格重力异常与地形起伏变化无关作为判断布格重力异常校正是否合理的标准,事实上其为山区地形改正时的普遍原则。然而,实际工作中,必须针对勘探的具体目标进行具体分析。例如区域重力调查中,通常会采用统一的中间层密度(一般取为地壳平均密度2.67×103 kg/m3)进行校正以方便数据拼接及对比,此时布格重力异常通常与地形呈现镜像关系,区域性的重力变化反映了地壳厚度的变化特征。在局部重力测量时,布格重力异常也可能表现为与地形同像的特征,例如盆山结合部位,造山带通常由变质岩、火成岩等组成,而盆地内部沉积层较厚,会使得重力异常呈现山区高、盆地低的特征,这种同像的重力异常是符合地质意义的,若研究盆山构造特征,则不能简单的以布格重力异常与地形无关而判断。而本文中的九嵕山地区,勘探目标为昭陵墓道口及墓室,其为近地表局部异常,因此整个山体引起的重力变化为非目标异常,布格重力异常的计算过程也相当于消除了区域背景。因此,实际工作中应将地形校正的过程与布格重力异常的后续处理结合起来,以提取勘探对象引起的重力异常为最终目的,若在地形校正时采用地壳平均密度等常密度值进行校正,则在重力资料处理时需要采用一定的措施消除或减弱与勘探目标无关的异常;相反,若在地形校正时采用了分区校正、变密度校正等措施已在一定程度上减弱了非勘探目标的重力影响,则在重力资料处理中可针对性的进行处理即可。
6 结论
针对山区重力测量时地形改正密度选取不准确引起的山形异常问题,本文以九嵕山重力异常为例,基于回归分析方法选取了最佳的地形改正密度,改正后的布格重力异常明显不受地形影响,证明了这一方法的正确性。本文使用回归分析方法时,采取了迭代计算的措施,与常规的采用一系列密度值进行试算的方法相比,本文方法可以快速获得最佳地形改正密度。从九嵕山地区的重力测量工作来看,现有技术条件高精度地形数据获取已不是难点,以实际地质构造为约束的改正方法及匹配的数据处理方法,是改进重力改正效果及提高解释精度的关键之一。
参考文献
重力异常与高程关系的统计分析
[J].
Statistic analysis of relationship between gravity anomaly and elevation
[J].
回归分析在区域重力资料处理中的应用
[J].
The application of regression analysis to treating regional gravity data
[J].
山形重力异常的成因机制及消除方法
[J].
Cause of mount-shape gravity anomaly and the method to remove it
[J].
区域重力测量外部校正的几个问题
[J].
Some problems of external corrections in regional gravity survey
[J].
Bouguer density determination by fractal analysis
[J].DOI:10.1190/1.1442909 URL [本文引用: 1]
分数维在湘南重力地改及密度校正中的应用
[J].
The application of fractal dimension to gravitional landform correction and density correction
[J].
布格重力异常求取中的变密度校正方法与应用
[J].
The study on the correction method of variable density for the medial stratum in gravity prospecting
[J].
Quantitative analysis of a mud volcano gravity anomaly
[J].DOI:10.1190/1.1441022 URL [本文引用: 1]
山区重力改正中几个问题的讨论
[J].
Discussion on some problems in gravimetric data correction in hilly area
[J].
估计重力地改最佳地层密度值的面积相关法
[J].
The area relevant method for estimating optimal stratigraphic density in gravity terrain correction
[J].
重力测量变密度校正方法的应用效果
[J].
Application effect of variable density correction method in gravity measurement
[J].
逐点滑动式黄土密度补偿校正法及其应用
[J].
Point-by-point sliding loess density compensation correction method and its application
[J].
解决西藏羌塘地区重力异常与高程相关问题的尝试
[J].
The elimination of false anomalies resulting from correlation between Bouguer anomalies and topography in Qiangtang, Tibet
[J].
重磁弱异常处理研究与应用
[J].
Processing and application of weak gravity and magnetic anomaly
[J].
重力勘探在沉积型铝土矿调查中的应用研究
[J].
The application research on the gravity exploration in sedimentary bauxite deposit survey
[J].
近地表密度估计的重力贝叶斯分析方法及在云南地区的应用
[J].
Estimation of near-surface density based on gravity Bayesian analysis and its application in Yunnan area
[J].
Simultaneous 3D depth-to-basement and density-contrast estimates using gravity data and depth control at few points
[J].DOI:10.1190/1.3380225 URL [本文引用: 1]
Mapping the depth to basement by iterative rescaling of gravity or magnetic data
[J].DOI:10.1029/2018JB015667 URL [本文引用: 1]
The estimation of depth to basement under sedimentary basins from gravity data: Review of approaches and the ITRESC method, with an application to the Yucca flat basin (Nevada)
[J].DOI:10.1007/s10712-020-09601-9 URL [本文引用: 1]
不同源DEM数据在高山区重力中区地形改正中的实用性
[J].
The application of different sources DEM data in media region terrain correction of gravity in high mountain areas
[J].
山区区域重力测量中间层校正系数的确定
[J].
The determination of stone slab correction coefficient in regional gravity measurement of mountain areas
[J].
The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins
[J].
Fast gravity inversion of basement relief
[J].DOI:10.1190/geo2014-0024.1 URL [本文引用: 1]
/
〈 |
|
〉 |
