基于优选地震属性与PSO-BP模型的煤层含气量预测
Prediction of coalbed methane content based on preferred seismic attributes and PSO-BP model
通讯作者: 吴海波(1988-),男,博士,讲师,主要研究方向为非常规气储层岩石物理与地震反演预测方法。Email:wuhaibocumt@163.com
责任编辑: 叶佩
收稿日期: 2019-11-25 修回日期: 2020-10-11 网络出版日期: 2020-12-20
基金资助: |
|
Received: 2019-11-25 Revised: 2020-10-11 Online: 2020-12-20
作者简介 About authors
臧子婧(1995-),女,江苏扬州人,硕士研究生,从事地震属性优化与反演方面的研究工作
常规煤层含气量预测方法多基于测井约束的地震属性反演以及线性映射模型,造成预测结果的精度难以控制,严重限制了方法的普适性。本文从地震属性优选与BP神经网络预测模型改进两方面入手开展研究。利用Q型聚类分析方法,对提取的目标储层地震属性进行分类优选,得到了与地质目标相关性好且相互独立的4种地震属性;进一步利用粒子群寻优算法对BP神经网络算法的输入层与隐含层的连接权值和隐含层的阈值进行了优化,构建PSO-BP预测模型,并利用井位置的优选地震属性和含气量数据训练PSO-BP模型。基于训练好的PSO-BP模型,以整个工区的优选地震属性作为输入,进行研究区内煤层含气量预测。井位置含气量预测结果与实测结果对比表明,该预测方法准确率高。因此,可认为PSO-BP预测模型以及相应的预测方法流程能有效适用于煤储层含气量的预测。
关键词:
Conventional coal seam gas content prediction methods are mostly based on logging constrained seismic attribute inversion and linear mapping model,which makes the prediction accuracy difficult to control,and severely limits the universality of the method.This paper starts with two aspects:seismic attribute optimization and BP neural network prediction model improvement.Using the Q-type clustering analysis method,the seismic attributes of the extracted target reservoirs are classified and optimized,and four kinds of seismic attributes with good correlation with the geological targets are obtained.The particle swarm optimization algorithm is further used to BP neural network algorithm.The connection weights of the input layer and the hidden layer and the threshold of the hidden layer are optimized,and the PSO-BP prediction model is constructed.The PSO-BP model is trained by using the preferred seismic attributes and gas content data of the well location.Based on the trained PSO-BP model,the coal seam gas content prediction in the study area is carried out with the preferred seismic attributes of the entire work area as input.The comparison between the predicted gas content of the well position and the measured results shows that the prediction method has high accuracy.Therefore,it can be considered that the PSO-BP prediction model and the corresponding prediction method flow can be effectively applied to the prediction of coal gas content in coal reservoirs.
Keywords:
本文引用格式
臧子婧, 吴海波, 丁海, 张平松, 董守华.
ZANG Zi-Jing, WU Hai-Bo, DING Hai, ZHANG Ping-Song, DONG Shou-Hua.
0 引言
国内外预测煤层含气量的方法主要有含气量—梯度法、测井曲线估算法、综合地质条件分析法、地震法、数学模型预测法等[6]。煤层含气量受到多种地质条件控制,它们之间存在着复杂模糊的非线性关系,利用传统预测方法难以做到准确表达[7]。在这些方法中,地震勘探法可以直观反映出许多影响煤层含气量的地质因素,获得许多综合特征,如振幅、频率等,且地震勘探成本低,效率高[8],近些年利用地震属性结合数学模型预测法来解决煤层含气量预测问题是一个新兴的研究方向[9,10]。对于已进行地震勘探且有少量井资料的研究区,可以基于优选出的多种地震属性利用神经网络技术预测煤层含气量[11]。BP神经网络算法适用于解决非线性问题,然而当网络层次较多或者样本数量较少时,会出现计算量大、收敛慢、局部极小等问题[12]。
因此,本文提出一种粒子群寻优算法改进的BP神经网络预测模型——PSO-BP预测模型,通过设计合理的粒子群和适应度函数,对神经网络的输入层与隐含层的连接权值和隐含层的阈值进行优化,从而提高了预测模型的精度和效率。
1 地震属性的优选
1.1 研究区概况
图1
图2
1.2 地震属性提取与优选
本文依据叠后三维地震数据体,提取振幅、频率、衰减、几何类等多个类型的地震属性,其中各属性的提取涉及到大量数学公式,这里不一一赘述。然而,对于特定地质目标,并非每一个地震属性都与其有明显的对应关系且部分地震属性存在相关性,因此,有必要对地震属性进行筛选,优选出对地质目标反映最敏感且相互独立的地震属性集,以提高地震属性预测的精度[13]。
基于此,本文通过以下两个方面的工作进行地震属性的优选。
1) 地震属性的初选,即优选出与地质目标相关性较好的地震属性集。将井位置提取的各个地震属性和煤层含气量数据进行归一化处理后,按照式(1)计算各属性和煤层含气量的相关系数,优选出相关系数较大的属性,组成模型用的地震属性集。共初选出了9种地震属性,各属性与煤层含气量的相关系数如表1所示。
式中:xi为归一化后各个属性,y为归一化后的煤层含气量数据。
表1 井位置的各属性与煤层含气量相关系数
Table 1
地震属性 | 声阻抗 | 最大曲率 | 倾角属性 | 甜点属性 | 薄层属性 | 瞬时加速度 | 瞬时振幅 | 瞬时频率 | 瞬时Q值 |
---|---|---|---|---|---|---|---|---|---|
属性编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
煤层含气量 | -0.0154 | -0.1314 | -0.2406 | 0.0154 | -0.3609 | -0.2636 | 0.1212 | 0.0548 | -0.1073 |
2) 利用Q型聚类分析法,对初选出的地震属性进行分类优选,确保地震属性的独立性。将归一化后的9种属性作为行向量组成矩阵rij,按照式(2)计算出矩阵行向量之间的距离系数并进行分类合并,得出如图3所示的属性聚类分析图。
式中:Xi=(xi1,xi2,…,xim)和Xj=(xj1,xj2,…,xjm)是矩阵rij的行向量; i,j=1,2,…,n。
图3
图4
图4
优选地震属性
a—倾角;b—薄层属性;c—瞬时振幅;d—瞬时Q值
Fig.4
Preferred seismic attribute map
a—dip;b—thin bed;c—instanteous amplitude;d—instanteous Q
由表1可知, 倾角属性、 薄层属性以及瞬时Q值与煤层含气量呈负相关,而瞬时振幅与煤层含气量呈正相关。
2 PSO-BP预测模型构建
2.1 BP神经网络原理
图5
BP算法由正向传播和反向传播两个过程组成。首先是正向传播过程,样本输入后经隐单元层逐层处理并传向输出层,计算出各层神经元的输入和输出,通过实际输出
式中:m为隐藏层的层数,i、j为各层神经元个数。若误差不满足精度要求,则转入反向传播,将误差信号沿原来的连接通路返回,通过式(4)修改各层神经元的权值和阈值,直到误差信号满足精度要求为止。
式中:
式(4)说明本层的误差信号的求取必须用到上一层的误差信号,整个算法没有引入其他参数,仅是通过训练样本和误差信号来不断地调整权值和阈值,因此,该方法容易陷入局部极值,当网络层次较多时,会导致计算量大、收敛慢等问题[16]。
2.2 PSO-BP预测模型构建与参数设置
本文利用粒子群算法对神经网络各层神经元的权值和阈值进行优化,从而解决以上问题。
式中: i=1,2,…,N,N是种群中粒子的总数;j=1,2,…,K,K是搜索空间的维数;
图6
图6
粒子群改进BP神经网络流程
Fig.6
Particle swarm improvement BP neural network flow chart
1)设置BP神经网络的基本结构、参数,如InDim、OutDim、HiddenNum等。输入学习样本,进行归一化处理。
2)粒子群参数设置:种群数目N=400;c1=c2=3;惯性权重w=1;最大速度vmax=5;速度向量维数Dims=InDim×OutDim+HiddenNum+HiddenNum×OutDim+OutDim;设置最大迭代次数Tmax,同时,初始化粒子的速度矢量和位置矢量,每个粒子由两个部分组成,分别是速度矩阵和位置矩阵。
3)按式(7)确定适度函数。Ji对个体进行评价分为两个步骤:首先,把最小适应度函数值设置为粒子的极值个体,然后,把粒子中最小的极值个体设置为全局极值,即所求问题的最优解:
4)以粒子的当前最佳位置为迭代点,进行迭代。
5)更新粒子的
6)排除
7)当迭代次数达到Tmax或误差满足精度要求时,停止迭代,否则转入步骤5)。
8)迭代停止后,当前的pbest值和gbest值为全局最优解,即BP神经网络的权值和阈值,可代入BP神经网络中进行训练学习。
本文预测模型中,隐含层中的神经元均采用Log-sigmoid型传递函数,logsig函数可以把[-∞,+∞]的任意输入映射为[0,1]之间的对应值,以增强网络的非线性处理能力;输出层的神经元则采用purelin型传递函数,使得网络输出在[-∞,+∞]上。
2.3 预测流程
综上所述,煤层含气量的预测工作分为两大部分,第一部分为属性的提取与优选,第二部分为粒子群神经网络预测,具体实施流程如图7所示。
图7
3 煤层含气量预测结果与分析
图8
图8
目标煤储层含气量预测结果
Fig.8
Target coal reservoir gas content prediction results map
表2 井位置预测值与实测值对比
Table 2
井号 | 实测值/(m3·t-1) | 预测值/(m3·t-1) | 误差率/% |
---|---|---|---|
Q1201 | 18.9 | 18.904 | 0.02 |
Q1202 | 7.97 | 8.041 | 0.89 |
Q1203 | 13.39 | 13.453 | 0.47 |
Q1204 | 25.50 | 25.502 | 0.01 |
Q1205 | 5.39 | 5.4110 | 0.39 |
Q1206 | 10.27 | 10.230 | 0.39 |
Q1208 | 12.66 | 12.728 | 0.54 |
Q1501 | 15.45 | 15.504 | 0.35 |
Q1502 | 25.7 | 25.657 | 0.17 |
Q1503 | 18.8 | 18.825 | 0.13 |
分析表2可知:Q1501、Q1502、Q1503这3口井的实测值处于15~25 m3/t,煤层含气量均较高,推断这3口井附近的区域煤层含气量较高;位于横测线400~600区域的Q1202、Q1205两口井的实测值在6 m3/t左右,含气量低,推断这两口井附近的区域煤层含气量较低;Q1203、Q1206、Q1208这3口井的实测值在11 m3/t左右,含气量处于中等范围,推断这3口井附近的区域煤层含气量也是属于中等水平;Q1201、Q1204两口井的实测值偏高,而周围区域的煤层含气量值中等偏低,因此分析判断这两口井附近的煤层含气量较附近区域会有增高。
结合图8,所圈位置为明显的高值区,中部为明显的低值区,其余位置煤层含气量中等。这一分布格局与上面的地质分析大致吻合,表明预测结果具有一定可靠性。井位置处的煤层含气量预测值与实测值高度吻合,最大误差仅0.89%,说明本文模型预测精度较高,基于优选属性的粒子群神经网络预测模型预测煤层含气量的效果较理想。
4 结论
1)利用Q型聚类分析优选出的4种相互独立的地震属性虽都与煤层含气量呈极复杂的非线性关系,但在一定程度上均能反映煤层气的富集情况,具有一定的互补性,从多角度挖掘了煤层气富集区信息,较单一地震属性的预测结果更加可信。
2)利用粒子群寻优算法对神经网络算法的输入层与隐含层的连接权值和隐含层的阈值进行优化,大大提高了预测模型的预测精度以及训练速度,解决了传统BP神经网络预测模型学习效率低、收敛缓慢、容易陷入局部最小等问题。
3)利用PSO-BP预测模型进行研究区煤层含气量的预测,预测结果与井位置实测数据高度吻合,可有效用于煤层含气量预测。
参考文献
基于三维地震资料的煤层气富集区预测
[D].
The application of 3D seismic date for the CBM enrichment region predication
[D].
中国煤层气产业发展途径与前景分析
[D].
Analysis of development approaches and prospects of coalbed methane industry in China
[D].
煤层气开发风险形成机制与评价模型研究
[D].
Study on risk formation mechanism and evaluation model of coalbed methane development
[D].
我国煤层气勘探与开发技术现状及发展方向
[J].
Status and development orientation of coal bed methane exploration and development technology in china
[J].
煤层气储层地震属性响应特征及应用
[D].
Coalbed methane reservoir seismic response characteristics and applications
[D].
基于测井参数的煤层含气量预测模型与应用
[J].
Application and prediction model of coalbed methane content based on logging parameters
[J].
煤层气资源量预测中的灰色系统理论研究
[D].
Study on the grey system theory in the prediction of coalbed methane resources
[D].
高丰度煤层气富集区地球物理识别
[J].
Geophysical identification of high abundance coalbed methane enrichment area
[J].
高丰度煤层气富集区地球物理定量识别技术研究与应用
[J].
Research and application of quantitative geophysics recognition in high abundance of coalbed methane rich region
[J].
煤层气含量影响因素及预测方法
[J].
Factors affecting coalbed methane content and prediction methods
[J].
地震相技术在煤层气勘探中的应用
[J].
Application of seismic facies technology in coalbed methane exploration
[J].
基于细菌觅食优化广义回归神经网络的煤层气含量预测
[J].
Prediction of coalbed methane content based on generalized regression neural network optimized by bacterial foraging
[J].
基于BP算法的煤层厚度预测技术应用研究
[J].
An applied research on coal thickness prediction technology based on BP algorithm
[J].
基于BP神经网络的煤层气井产水量预测研究
[J].
Study on water production of coalbed methane well by using BP neural network
[J].
基于遗传算法和人工神经网络的煤层厚度预测
[J].
Genetic algorithm and artificial neural network based coal seam thickness forecasting
[J].
粒子群优化算法的理论及实践
[D].
The theorem and practice upon the particle swarm optimization algorithm
[D].
改进PSO优化的BP神经网络短时交通流预测
[J].
BP neural network short-term traffic flow prediction based on improved particle swarm optimization
[J].
基于粒子群算法的星敏感器布局设计
[J].
Layout design method of star sensor based on particle swarm optimization algorithm
[J].
基于改进粒子群BP神经网络的矿井突水水源判别
[J].
Identification of mine water inrush source based on improved particle swarm optimization and BP neural network
[J].
基于粒子群算法的BP神经网络优化技术
[J].
BP neural network optimized by improved PSO
[J].
ΔP index with different gas compositions for instantaneous outburst prediction in coal mines
[J].
/
〈 |
|
〉 |
