E-mail Alert Rss
 

物探与化探, 2019, 43(1): 110-117 doi: 10.11720/wtyht.2019.2562

方法研究·信息处理·仪器研制

基于高斯束理论的有限频核函数计算

王守进1, 敬朋贵2, 蔡杰雄1

1. 中国石油化工股份有限公司 石油物探技术研究院,江苏 南京 025111

2. 中国石油化工股份有限公司勘探分公司,四川 成都 610041

The finite frequency kernel function calculation based on Gassian beam theory

WANG Shou-Jin1, Jing Peng-Gui2, CAI Jie-Xiong1

1. Academy of Petroleum Geophysical Exploration Technology,SINOPEC,Nanjing 025111,China

2. Branch of Geological Exploration,SINOPEC,Chengdu 610041,China

责任编辑: 叶佩

收稿日期: 2017-12-14   修回日期: 2018-09-13   网络出版日期: 2019-02-20

基金资助: 国家科技重大专项.  2017ZX05036

Received: 2017-12-14   Revised: 2018-09-13   Online: 2019-02-20

作者简介 About authors

王守进(1991-),男,硕士,现就职于中石化石油物探技术研究院,工程师,从事地震偏移成像及速度反演工作。Email:wangshj.swty@sinopec.com

摘要

相对于常规射线层析速度建模,基于波动理论的层析速度建模考虑了波的带限特性,反演分辨率更高。波动理论层析的核心在于波路径(有限频核函数)的计算。文中详细介绍了一种基于高斯束算子计算有限频核函数的方法,分析了初始束宽度和高斯束出射角度间隔对计算精度的影响;并针对高斯束近源处误差较大的缺陷,提出了改进的束参数以提高近源精度;详细分析了初始束宽度和角度间隔对改进高斯束方法的影响及改进高斯束的聚焦特性;数值算例验证了该方法在缓变介质中计算有限频核函数的可行性,计算效率较高且可处理回折波的核函数。

关键词: 有限频 ; 核函数 ; 高斯束 ; 初始束宽度 ; 束参数

Abstract

In comparison with the routine ray tomographic velocity model construction,the tomographic velocity model construction based on undulation theory considers the belt limitation property of the wave,and hence it has higher inversion resolution.The core of the undulation theory tomography lies in the calculation of the wave route (finite frequency kernel function).This paper introduces in detail a method for calculation of finite frequency kernel function based on Gassian beam operator,analyzes the effect of the initial width and the emergence angle interval of the Gassian beam on the calculation precision.To overcome the defect of the relatively large error at the near-source place of the Gassian beam,the authors put forward improved beam parameters so as to raise the near-source precision.This paper also analyzes in detail the effect of initial beam width and angle interval on the improved Gassian beam and the focussing characteristics of the improved Gassian beam.Digital calculation example has verified the feasibility of this method in calculation of finite frequency kernel function.Its calculation efficiency is relatively high and it can process kernel function of the inflection wave.

Keywords: finite frequency ; kernel function ; Gassian beam ; initial beam width ; beam parameters

PDF (3714KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王守进, 敬朋贵, 蔡杰雄. 基于高斯束理论的有限频核函数计算. 物探与化探[J], 2019, 43(1): 110-117 doi:10.11720/wtyht.2019.2562

WANG Shou-Jin, Jing Peng-Gui, CAI Jie-Xiong. The finite frequency kernel function calculation based on Gassian beam theory. Geophysical and Geochemical Exploration[J], 2019, 43(1): 110-117 doi:10.11720/wtyht.2019.2562

0 引言

目前旅行时层析速度建模主要基于几何射线理论。在无限带宽近似下,旅行时和振幅的扰动只与射线路径上的速度扰动有关。实际上,地震波是带限的,中心射线周围一定空间范围内的速度扰动都会对旅行时和振幅产生影响。并且射线理论存在着诸如多路径、阴影区和焦散等问题。因此,许多学者提出了基于波动理论的层析建模方法[1,2,3,4]。有限频核函数(Frechet导数)替代射线路径进入了层析领域[5,6]

波动理论层析的核心在于有限频核函数的计算。已经有诸多学者提出了有限频核函数的计算方法。一些学者采用有限差分算子计算核函数[7,8,9,10],该方法可以处理任意复杂的速度模型,但计算量较大。K Yoshizawa和Kennett采用渐进射线理论计算面波核函数[11]。Fliedner和Bevc、Xie等采用单程波算子计算核函数[12,13],虽可以处理波传播中的散射绕射等现象,但是波场传播角度受限。Liu利用频率空间域有限差分算子计算了均质和非均质菲涅耳体内的有限频核函数[14]。高斯束是波动方程的高频渐进解,该方法已经广泛应用于地震正演和成像中。地震波场可以近似为多个高斯束的叠加,相比于几何射线,高斯束保留了波的动力学特征;相比于波动方程有限差分解,高斯束计算效率高;相比于单程波,高斯束又可以处理宽角度的回折波。因此,笔者详细介绍了利用高斯束计算有限频核函数的方法,分析了影响高斯束计算格林函数精度的因素(高斯束出射角度间隔和初始束宽度),并针对高斯束近源处误差较大的问题,采用了改进的高斯束参数。通过均质模型,对比了高斯束计算的格林函数以及单频核函数、有限频核函数与解析解之间的误差;计算了常梯度速度模型下的有限频核函数。数值结果表明,利用高斯束算子计算有限频核函数可以保证精度和计算效率。

1 高斯束计算格林函数

根据Ceveny射线理论,高斯束是波动方程的高频渐进解,在2D情况下,高斯束频率域表达式为[15]

u(s,n,ω)=v(s)Q(s)1/2expiωτ(s)+iω2P(s)Q(s)n2

其中,(s,n)构成射线中心坐标系,s为中心射线的弧长,n为观测点距中心射线的垂直距离,τ为中心射线上的旅行时,ω为圆频率。PQ是动态射线追踪的解,为复数标量。满足如下方程式,该方程可以通过四阶龙格—库塔方法求解:

dQ(s)/ds=v(s)P(s),

dP(s)ds=-1v2(s)2V(s,n)n2Q(s)

其中,PQ的初始条件P0Q0可由下式给出:

P0=i/V0,Q0=ωrω02/V0

式中,ωr是参考频率,ω0为高斯束初始有效宽度,是影响高斯束精度的重要参数。由于高斯束是中心射线周围的高频渐进解,当速度在一个高斯束范围内变化较快时,高斯束会变得不精确,因此在传播中应尽量令高斯束不会过度展宽。一般令初始束宽度等于参考频率对应的平均波长,即ω0=va/frV0是射线出射位置的介质速度。P,Q可以分解为平面波解和球面波解的复合形式。其中p1,q1为平面波解,p2q2为球面波解,即:

P=ε×p1+i×p2, Q=ε×q1+i×q2

式中,ε为束参数,常规高斯束对应的ε=ωrw02,下面将会讨论改进的束参数对高斯束的影响。

2D情况下,格林函数可以表达为不同出射方向高斯束的叠加:

G(r,rs;ω)i2Q0V0uGB(r,rs,ω)dθ

已知2D情况下,格林函数的解析表达式为:

G2D(X',X,ω)=expiωrv+/42ωr/πv

为分析高斯束方法计算的格林函数精度,采用高斯束方法和解析表达式计算均匀介质的格林函数。均匀介质速度设定为2 000 m/s,XZ方向均为501个样点,间距都取5 m。将炮点置于模型中心(1 250,1 250)处。分别采用解析表达式和高斯束计算该速度模型20 Hz的格林函数,并抽取Z=1 250处水平线的结果进行对比分析。设置初始束宽度ω0=10、50、100、150、200、300、400,分别计算不同初始束宽度高斯束合成的格林函数,图1a显示了不同初始束宽度计算的格林函数结果与解析解的对比情况;图1b显示了高斯束方法分别采用不同的出射角度间隔da=1、2、3、4、5、6、7格林函数计算结果与解析解的对比情况。从图中可以看出:高斯束计算的格林函数与解析解在震源附近有些许误差,但当传播距离大于一个波长时,高斯束计算的格林函数与解析解拟合较好。当初始束宽度等于10 m时,高斯束计算格林函数的结果与解析解结果相差较大,当初始束宽度大于一个波长(100 m)时,初始束宽度的增大对高斯束计算格林函数的精度影响较小。随着间隔角度的增加,高斯束计算精度逐渐降低。因此,为保证高斯束计算格林函数精度,常规高斯束方法应使初始束宽度大于一个波长,从而保证高斯束传播过程中展布不会过宽,且出射角度间隔不能过大。具体的高斯束出射角度间隔应满足λ/(2ω0)[16]图2a~2d分别为采用初始束宽度100 m,角度间隔2°的高斯束叠加而成的格林函数和解析解、两者残差及Z=1 250处水平切线对比结果。证实了利用高斯束计算格林函数精度较高。

图1

图1   不同初始束宽度和角度间隔对格林函数精度的影响

a—不同初始束宽度对格林函数精度的影响;b—不同角度间隔对格林函数精度的影响

Fig.1   The accuracy of Green function with different initial beam width and angular spacing

a—effects of different initial beam widths on the accuracy of Green function;b—effects of different angle intervals on the accuracy of Green function


图2

图2   20 Hz单频格林函数的高斯束解、解析解及其误差比较

a—20 Hz单频格林函数的解析解;b—20 Hz单频格林函数高斯束解;c—解析解和高斯束叠加解的差值;d—水平切线误差对比

Fig.2   Error comparison of 20 Hz Green function of GB、analytical solution

a—20 Hz Green function analytical solution;b—20 Hz Green function GB solution;c—error of two solution;d—horizon slice of the error


通过前面数值实验看出,高斯束叠加计算的格林函数与解析解在震源附近存在误差。这是由于束参数的选择,使得高斯束初始波前曲率为0,高斯束在近源处表现出平面波特征,而解析格林函数在震源处应为球面波。采用改进的动态射线束参数[17],使高斯束初始波前曲率接近圆曲率,可以提高高斯束在近源处的计算精度。此处省去复杂的推导,直接给出菲涅耳体束参数,如下式:

ε(s)=ωrefγF22+ωrefγF222-4q12(s)q22(s)2q12(s),

其中,γF为菲涅尔半径,表达式为:

γF(s)=πωrefq2(s)p2(s)+λave216,

其中,λave为参考频率对应的速度模型的平均波长。

改进高斯束精度受初始射线宽度和出射角度数影响较小。图3a显示了不同初始束宽度对改进束参数的高斯束精度的影响,从中可以看出,初始束宽度从波长的0.1~4倍变化,不同初始束宽度的高斯束结果与解析解误差都较小。结合图1a初始束宽度对常规高斯束精度影响分析,改进束参数的高斯束叠加结果受初始束宽度的影响较小,不同的初始束宽度(即使初始束宽度小于一个波长)都能给出比较精确的结果。图3b显示了采用不同束间隔角度计算格林函数与解析解的误差。角度间隔分别为1°、2°、4°、8°、12°、16°,从图中可以看出,即便束角度间隔增大到16°,其解与解析解误差也并不大。综上分析,改进束参数使得高斯束模拟精度受初始射线宽度和角度间隔的影响小。为节省计算量,一般选择初始束宽度为半个波长大小,束角度间隔选择10°即可。

图3

图3   不同束宽度和出射角度间隔对改进高斯束精度的影响

a—改进高斯束不同初始束宽度对计算格林函数结果的影响;b—改进高斯束不同出射角度间隔对计算格林函数的影响

Fig.3   Effect of beam width and angular spacing for modified GB

a—beam width effect;b—angular spacing effect


图4a、4b对比显示了常规束参数和改进束参数的单条高斯束的对比,可以看出改进束参数的高斯束波前在震源附近更接近圆形。图4c展示了改进束参数的单频格林函数在震源处与解析解的结果更加接近。上述特征表明:改进束参数模拟的波场更接近球面波,尤其是在近源处精度较高。

图4

图4   常规高斯束与改进高斯束单条高斯束结果对比

a—常规束参数高斯束;b—改进束参数高斯束;c—改进束参数与常规高斯束的对比

Fig.4   Comparison of Green function with conventional GB and modified GB

a—normal beam parameter Gaussian beam;b—improved beam parameter Gaussian beam;c—the improved beam parameters are compared with the conventional Gaussian beam


改进高斯束还具有聚焦特性。设计如图5所示高低速相间分布的层状速度模型。速度分别为 2.5、1.0、2.5、4.0、5.0 km/s。图6对比了单条常规高斯束与改进高斯束经过速度异常时的聚焦情况,可见改进高斯束具有更好的聚焦作用,符合波场传播中能量分配原则[17]

图5

图5   高低速相间分布的层状速度模型

Fig. 5   Layer model with high and low velocity


图6

图6   单条高斯束经过层状速度模型时束宽度变化

a—常规高斯束;b—改进高斯束

Fig.6   Beam width variation when single beam propagating layer model

a—conventional beam;b—modified beam


综上分析,改进束参数的高斯束较常规高斯束有如下四个优点:

1)改进高斯束在震源处传播更加符合球面波特性,因此近震源处格林函数精度更高;

2)改进高斯束的精度受初始束宽度影响更小;

3)改进高斯束的精度受高斯束出射角度间隔影响更小,从而可以以较少的束计算格林函数,减少计算量;

4)在变速介质中传播时,改进高斯束有更好的聚焦特性,符合波场传播规律。

综合考虑计算精度和计算效率,建议初始射线宽度设定为半个波长宽度,角度间隔选择10°。

2 计算敏感度核函数

多名学者研究了基于波动理论的敏感度核函数[2,4,19]。单频旅行时敏感度核函数KF可以表示为:

KF(r,rs,rG,ω)=Imag2k02G(r;rS,ω)G(r;rG,ω)G(rG;rS,ω)

其中,k0=ω/v(r)是背景场波数,v(r)是背景速度场,G是格林函数,r是空间位置,rsrG是源点和接收点位置。上式中,敏感度核函数由两个格林函数的相关构成,一个是从震源发出,另一个是由接收点发出。带限敏感度核函数可以由单频敏感度核函数的加权叠加获得:

KB(r,rS,rG)=W(ω)ωKF(r,rs,rG,ω)dω,

其中,权重函数采用刘玉柱[18]给出的高斯权重系数:

W(ω)=w(ω)ω1ω2w(ω)dω,w(ω)=1σ2πe-(ω-ω0)22σ2

其中,ω为圆频率,ω0为频率展布范围的中心频率,σ为中心圆频率附近具有较高能量的带宽展布范围,一般取0.3,权重系数如图7所示。

图7

图7   0~50 Hz频率范围的高斯权重系数

Fig.7   Weight coefficient of 0~50 Hz GB


从表达式(7)、(8)可以看出,不论单频还是带限敏感度核函数,其核心就是背景速度场中格林函数的计算。速度模型仍选用前文计算格林函数的均质模型,设置炮点位置(500 m,1 250 m),检波点位置(2 000 m,1 250 m)。图8a、8b 显示了单频20 Hz的敏感度核函数的解析解和高斯束解,图8c,8d 显示了解析解和高斯束计算的核函数的误差。图9a、9b分别显示了5~25 Hz有限频核函数的解析解和高斯束解,图9c显示了解析解与高斯束解中间水平切线的差值。两种方法计算的带限核函数几乎一致,证明了利用了高斯束算子计算有限频核函数的有效性。

图8

图8   解析解与高斯束计算的20 Hz单频核函数及误差

a—20 Hz核函数解析解;b—高斯束计算的核函数;c—解析解与高斯束解的整体差值;d—中间竖直切线差值

Fig.8   Kernel function and error of analysis solution and GB solution

a—20 Hz analysis kernel function;b—20 Hz GB solution kernel function;c—error of analysis solution and GB solution;d—error slice of analysic solution and GB solution


图9

图9   解析解和高斯束解带限核函数及误差对比

a—5~25 Hz带限核函数的解析解;b—5~25 Hz带限核函数的高斯束解;c—中间位置横向切线结果对比

Fig.9   Frequency-limited kernel function and error between analysis and GB solution

a—5~25 Hz analysis kernel function;b—5~25 Hz GB kernel;c—horizon slice of kernel function of two methods


在近地表速度建模中,回折波层析[20]是目前流行的方法。该方法中,初始模型常设为常梯度速度模型。由于高斯束没有角度限制,所以非常适合在此种模型下计算有限频核函数。设置常梯度速度模型,令速度在Z方向梯度为2,炮检点水平距离1 500 m。利用高斯束算子计算该模型的0~50 Hz的带限核函数,结果如图10a所示,中间位置的竖直切线结果如图10b所示。

图10

图10   常梯度模型下的带限核函数及纵向切线结果

a—常梯度速度模型带限核函数;b—中间位置纵向切线结果

Fig.10   Kernel function of constant velocity gradien

a—frequency-limited kernel function;b—vertical slice of kernel function


通过以上数值实验可以看出波动层析和射线层析的区别在于:射线层析中只有几何射线上的速度扰动对旅行时产生影响,且各速度扰动的权重为1;而在波动层析中,中心射线周围一定范围内的速度扰动都会对旅行时产生影响,且中心射线上的权重为局部极小值,权重最大值出现在中心射线两侧一定位置处。

在基于波动理论的中深层速度层析建模中,需要计算地下某反射点到炮点、检波点的带限核函数。文中选取四川丁山某工区的深度域初始速度模型计算带限核函数。速度模型平均速度为4 552 m,主频为35 Hz,选取主波长的一半作为初始射线宽度,即65 m,出射角度间隔为10°,层析敏感度核函数如图10b。与射线层析路径相比(图11a),带限核函数拥有更宽的空间展布,即除了中心射线路径上的速度对走时残差有影响外,中心射线周边一定范围内的速度异常也影响走时残差,其影响程度的权重为带限核函数的幅值。相应的层析矩阵零元素更少,层析反演更加稳定。因此,利用高斯束计算格林函数将在波动理论层析中发挥重要作用。

图11

图11   丁山某工区速度模型及高斯束方法计算得到层析带限核函数

a—丁山某工区深度域初始速度模型;b—从反射点出发到达炮检点的带限核函数

Fig. 11   Dingshan velocity model and frequency-limited kernel function by GB method

a—Dingshan velocity model;b—kernel function from source point to reflect point and from reflect point to detector point


3 结论

1)高斯束近似格林函数的主要影响因素有初始束宽度和出射角度间隔。利用高斯束计算的核函数与解析解相比,除近源处误差较大外,远场处(传播距离大于一个波长)基本一致。常规高斯束初始束宽度要大于一个平均波长且要保证较小的出射角度间隔才能保证计算精度。

2)改进束参数的高斯束能提高近源处的模拟精度,且受初始束宽度和出射角度间隔的影响较小。相比常规高斯束,改进高斯束经过速度异常区域时波场更聚焦。

3)利用高斯束计算层析敏感度核函数,可以适应缓慢变化的非均匀介质,且计算效率较高。

The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。

参考文献

Devaney A J .

Geophysical diffraction tomography

[J]. IEEE Transa-Ctions on Geoscicence and Remote Sensing, 1984,22(1):3-13.

[本文引用: 1]

Jocker, Spetzler, Smeulders ,et al.

Validation of first-order diffraction theory for the traveltimes and amplitudes of propagating waves

[J]. Geophysics, 2006,71(6):T167-T177.

DOI:10.1190/1.2358412      URL     [本文引用: 2]

Luo Y, Schuster G T .

Wave-equation traveltime inversion

[J]. Geophysics, 1991,56(5):645-653.

DOI:10.1190/1.1443081      URL     [本文引用: 1]

Woodward.

Wave-equation tomography

[J]. Geophysics, 1992,57(1):15-26.

DOI:10.1190/1.1443179      URL     [本文引用: 2]

Dahlen F A, Hung S H, Guust N .

Frechet kernels for finite-frequency traveltimes-I.Theory

[J]. Geophysics, 2000,141:157-174.

DOI:10.1046/j.1365-246X.2000.00070.x      URL     [本文引用: 1]

Summary We use body wave ray theory in conjunction with the Born approximation tocompute 3-D Fr0108chet kernels for finite-frequency seismic traveltimes, measured by cross-correlation of a broad-band waveform with a spherical earth synthetic seismogram. Destructive interference among adjacent frequencies in the broad-band pulse renders a cross-correlation traveltime measurement sensitive only to the wave speed in a hollow banana-shaped region surrounding the unperturbed geometrical ray. The Fr0108chet kernel expressing this sensitivity is expressed as a double sum over all forward-propagating body waves from the source and backward-propagating body waves from the receiver to every single scatterer in the vicinity of this central ray. The kernel for a differential traveltime, measured by cross-correlation of two phases at the same receiver, is simply the difference of the respective single-phase kernels. In the paraxial approximation, an absolute or differential traveltime kernel can be computed extremely economically by implementing a single kinematic and dynamic ray trace along each source-to-receiver ray.

Huang Z, Su W, Peng Y , et al.

Rayleigh wave tomography of China and adjacent regions

[J]. Journal of Geophysical Research Solid Earth, 2000,108(B2).

DOI:10.1029/2001JB001696      URL     [本文引用: 1]

[1] This paper presents a tomographic study on the S wave velocity structure of China and adjacent regions. Group velocity dispersions of fundamental Rayleigh waves along more than 4000 paths were determined with frequency-time analysis. The study region was divided into a 100° 0103 100° grid, and velocities in between grid nodes were calculated by bilinear interpolation. The Occam's inversion scheme was adopted to invert for group velocity distributions. This method is robust and allows us to use a fine grid in model parameterization and thus helps to restore a more realistic velocity pattern. Checkerboard tests were carried out, and the lateral resolution was estimated to be 400°090009600° in China and its eastern continental shelves. The resulting group velocity maps from 10 to 184 s showed good correlation with known geological and tectonic features. The pure path dispersion curves at each node were inverted for shear wave velocity structures. The three-dimensional velocity model indicates thick lithospheres in the Yangtze and Tarim platforms and hot upper mantles in Baikal and western Mongolia, coastal area and continental shelves of eastern China, and Indochina and South China Sea regions. The Tibetan Plateau has a very thick crust with a low-velocity zone in its middle. Beneath the crust a north dipping high-velocity zone, mimicking a subducting plate, reaches to 200 km in depth and reaches to the Kunlun Mountains northward. In northern Tibet a low-velocity zone immediately below the Moho extends eastward then turns southward along the eastern edge of the plateau until it connects to the vast low-velocity area in Indochina and the South China Sea.

Zhao Jordan T H, Chapman C H .

Three-dimensional Frechet differen-tial kernels for seismic delay times

[J]. Geophysics, 2000,141:558-576.

[本文引用: 1]

姜勇 .

波路径旅行时层析成像方法研究

[D]. 青岛:中国海洋大学, 2006.

[本文引用: 1]

Jiang Y .

Wavepath traveltime tomography

[D]. Qingdao:Ocean University of China, 2006.

[本文引用: 1]

Zhang Z G, Shen Y, Zhao L .

Finite-frequency sensitivity kernels for head waves

[J]. Geophysics, 2007,171:847-856.

DOI:10.1111/j.1365-246X.2007.03575.x      URL     [本文引用: 1]

Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fr chet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examined. We present the results of a numerical study focusing on the finite-frequency effects of head waves. Our model has a low-velocity layer over a high-velocity half-space and a cylindrical-shaped velocity perturbation placed beneath the interface at different locations. A 3-D finite-difference method is used to calculate synthetic waveforms. Traveltime and amplitude anomalies are measured by the cross-correlation of synthetic seismograms from models with and without the velocity perturbation and are compared to the 3-D sensitivity kernels constructed from full waveform simulations. The results show that the head wave arrival-time and amplitude are influenced by the velocity structure surrounding the ray path in a pattern that is consistent with the Fresnel zones. Unlike the 'banana doughnut' traveltime sensitivity kernels of turning waves, the traveltime sensitivity of the head wave along the ray path below the interface is weak, but non-zero. Below the ray path, the traveltime sensitivity reaches the maximum (absolute value) at a depth that depends on the wavelength and propagation distance. The sensitivity kernels vary with the vertical velocity gradient in the lower layer, but the variation is relatively small at short propagation distances when the vertical velocity gradient is within the range of the commonly accepted values. Finally, the depression or shoaling of the interface results in increased or decreased sensitivities, respectively, beneath the interface topography.

谢春, 刘玉柱, 董良国 , .

基于声波方程的有限频伴随状态法初至波旅行时层析

[J]. 石油地球物理勘探, 2015,50(2):274-282.

DOI:10.13810/j.cnki.issn.1000-7210.2015.02.011      URL     Magsci     [本文引用: 1]

根据有限频理论,对于特定震相的观测信息,不仅射线路径上的介质对该信息具有影响,路径以外的其它区域对接收信息也具有影响,这种影响可以用核函数来表达。传统核函数的计算是基于"波路径"的,计算繁琐且效率低。而基于射线理论的伴随状态法虽然可以在很大程度上提高反演效率,却没有考虑地震波传播的有限频特性,这就导致了反演过程中低波数信息的缺失。本文基于伴随状态法,同时考虑地震波传播的有限频特性,研究并实现了基于声波方程的有限频伴随状态法初至波旅行时层析成像。将该方法应用于表层速度结构反演,理论模型实验表明,该方法比传统非线性射线旅行时层析成像具有更高的反演精度。

Xie C, Liu Y Z, Dong L G , et al.

First arrival tomography with finite frequency adjoint-state method based on acoustic wave equation

[J]. Oil Geophysical Prospecting, 2015,50(2):274-282.

Magsci     [本文引用: 1]

Yoshizawa K, Kennett B L N ,

Sensitivity kernels for finite-frequency surface waves

[J]. Geophysics, 2005,162:910-926.

DOI:10.1111/j.1365-246X.2005.02707.x      URL     [本文引用: 1]

Sensitivity kernels for fundamental mode surface waves at finite frequency for 2-D phase speed and 3-D shear wave speed are constructed based on the Born and Rytov approximations working with a potential representation for surface waves. The use of asymptotic Green's functions for scalar wave equations provides an efficient way to calculate the Born or Rytov kernels. The 2-D sensitivity kernels enable us to incorporate the finite-frequency effects of surface waves, as well as off-great-circle propagation, in tomographic inversions for phase-speed structures. We derive examples of the 2-D sensitivity kernels both for a homogeneous background model (or a spherically symmetric model), and for a laterally heterogeneous model. The resulting distortions of the shape of the sensitivity kernels for a heterogeneous background model indicate the importance of the use of proper kernels to account of the heterogeneity in the real Earth. By combining a set of 2-D sensitivity kernels with 1-D vertical sensitivity kernels for a particular frequency range and taking the inverse Fourier transform, we can derive 3-D sensitivity kernels for surface waves in the time domain. Such 3-D kernels are useful for efficient forward modelling of surface waveforms incorporating finite-frequency effects, and will also enable us to perform direct inversion of surface waveforms into 3-D structure taking account of finite-frequency effects.

Fliedner Bevc D .

Automated velocity model building with wave- path tomography

[J]. Geophysics, 2008,73:195-204.

DOI:10.1190/1.2957892      URL     [本文引用: 1]

Wavefield-continuation migration generally is recognized as superior to Kirchhoff methods in complex velocity models, such as below rugose salt bodies. It accounts for multipathing, sharp velocity contrasts, and the limited bandwidth of seismic wave propagation. Wavepath tomography builds the velocity model in a way that is consistent with the wavefield-migration operator. Traveltime residuals are back-projected along a wavepath instead of rays. The actual wavefield-continuation operator is used to represent the wave propagation between surface source/receiver pairs and subsurface reflection points. A wavepath is obtained by multiplying impulse responses from a surface location and a reflection point. The inversion matrix is kept to a manageable size by restricting the wavepath to the first Fresnel zone. The considerable expense of computing a single wavepath kernel in comparison to ray tomography is partially offset by the smaller number of back projections necessary to sample the velocity model adequately. We have used wavepath tomography to build subsalt velocity models using 2D synthetic data. Wavepath tomography was implemented in 3D.

Xie X B, Lokshtanov D, Pajchel J.

Finite-frequency sensitivity kernels and turning-wave tomography, possibilities and difficulties

[C]//Seg Technical Program Expanded, 2014: 4821-4826.

[本文引用: 1]

Liu Y Z, Dong L G .

Sensitivity kernel for seismic Fresnel volume tomography

[J]. Geophysics, 2009,74(5):u35-u46.

DOI:10.1190/1.3169600      URL     [本文引用: 1]

Hill N R .

Gaussian beam migration

[J]. Geophysics, 1990,55(11):1416-1428.

DOI:10.1190/1.1442788      URL     [本文引用: 1]

Geng Yu, Xie X B .

Gaussian beam based finite-frequency turning wave tomograph

[J]. Journal of Applied Geophysics, 2014,109:71-79.

DOI:10.1016/j.jappgeo.2014.07.019      URL     [本文引用: 1]

61A Gaussian beam based method is proposed to calculate sensitivity kernels.61We validate sensitivity kernels by comparing them with analytical and FD solutions.61An inversion system based on these kernels is proposed for travel-time tomography.61This is a wave based method but keeps the simplicity of the ray tomography.

杨继东, 黄建平, 吴建文 , .

不同地震波束构建格林函数的精度影响因素分析

[J]. 石油地球物理勘探, 2015,50(6):1073-1082.

DOI:10.13810/j.cnki.issn.1000-7210.2015.06.006      URL     Magsci     [本文引用: 2]

在零阶射线和旁轴射线理论的基础上,地震波束方法在地震波场研究中迅速发展,其中利用不同出射方向的地震波束构建格林函数是波场研究的关键。本文在高斯束研究基础上,首先给出了聚焦束、动态聚焦束、自适应聚焦束和菲涅尔束的构造方式,并详细分析它们的有效束宽度、波前曲率以及中心射线振幅在传播过程中的变化情况。然后,利用最速下降近似导出了初始束参数动态选取时构造格林函数的权系数,并系统地讨论了这几种波束构建格林函数的精度及其影响因素,为后续基于地震波束的正演及成像研究提供参考。

Yang J D, Huang J P, Wu J W , et al.

Accuracy factors of Green function constructed with different seismic wave beams

[J]. Oil Geophysical Prospecting, 2015,50(6):1073-1082.

Magsci     [本文引用: 2]

刘玉柱, 董良国, 李培明 , .

初至波菲涅尔体地震层析成像

[J]. 地球物理学报, 2009,52(9):2310-2320.

DOI:10.3969/j.issn.0001-5733.2009.09.015      URL     Magsci     [本文引用: 1]

<FONT face=Verdana>根据地震波传播的有限频理论,对于某个特定震相的观测信息,不仅射线路径上的点对该信息具有影响,射线领域上的其他点对接收信息也具有影响,这种影响可以用核函数来表达.本文基于波动方程的Born近似与Rytov近似,给出了非均匀介质情况下初至地震波振幅与走时菲涅尔体层析成像单频、带限层析核函数的计算方法.通过对均匀介质情况下初至地震波菲涅尔体层析成像核函数解析表达式的理论模型实验与分析,给出了不同维度振幅、走时单频菲涅尔体的空间分布范围,进而给出了带限菲涅尔体边界的确定方法.将本文的走时菲涅尔体层析成像理论应用于表层速度结构反演中,理论模型试验与实际资料处理结果表明,初至波菲涅尔体地震层析成像方法比传统的初至波射线层析成像理论具有更高的反演精度.</FONT>

Liu Y Z, Dong L G, Li P M , et al.

Fresnel volume tomography based on the first arrival of the seismic wave

[J]. Chinese J. Geophys.(in Chinese), 2009,52(9):2310-2320.

Magsci     [本文引用: 1]

Spetzler, Jesper, Snieder, et al.

The Fresnel volume and transmitted waves

[J]. Geophysics, 2004,69(69):653-663.

DOI:10.1190/1.1759451      URL     [本文引用: 1]

Stefani J P .

Turning-ray tomography

[J]. Geophysics, 1995,60(6):1917-1924.

DOI:10.1190/1.1443923      URL     [本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com