Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (4): 778-783    DOI: 10.11720/wtyht.2020.0042
  方法研究·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
熔融制样—X射线荧光光谱法测定小取样量地球化学样品中的主量元素
赵红坤1,2(), 郝亚波3, 田有国4, 高祥照4, 刘亚轩1()
1.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
2.中国地质大学(北京),北京 100083
3.津标(天津)计量检测有限公司,天津 300380
4.全国农业技术推广服务中心,北京 100026
The application of melting sample preparation-X ray fluorescence spectrometry to measuring a small amount of soil certified reference material
Hong-Kun ZHAO1,2(), Ya-Bo HAO3, You-Guo TIAN4, Xiang-Zhao GAO4, Ya-Xuan LIU1()
1. Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang 065000,China
2. China University of Geosciences,Beijing 100083,China
3. TJ-Standard (tianjin) Metrology Testing Co. Ltd,Tianjin 300380,China
4. National Agro-Tech Extension and Service Center,Beijing 100026,China
全文: PDF(1324 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

X射线荧光光谱法(XRF)是地球化学标准物质均匀性检验的重要方法之一,但目前应用XRF法对标准物质进行均匀性检验还存在争议。由于均匀性检验要求称样量为最小取样量,而采用常规粉末压片或熔融制样进行XRF均匀性检验时称样量一般均大于最小取样量,得到的结果在理论上不足以支撑样品在最小取样量条件下是否均匀。本研究称取0.1 g样品,以四硼酸锂、偏硼酸锂和氟化锂(质量比为45∶10∶5)为混合熔剂,碘化氨为脱模剂,熔融制备样片;采用经验系数法建立了SiO2、Al2O3、TFe2O3、MgO、CaO、Na2O、K2O、Ti、P和Mn共10个测量组分的标准曲线,各组分校正曲线的相关系数在0.997 3~1.000 0之间。对制样条件的实验优化结果表明,样品与熔剂比为1∶4,以2滴0.2 g/mL碘化氨为脱模剂,在1 050 ℃熔融10 min,熔融制得的样片成型效果最好。对方法参数进行了研究,各组分相对标准偏差值在0.2%~5.3%之间,相对误差小于6.2%,方法精密度和方法准确度均较高。与常规称样量0.65 g熔片结果相比,两种方法实验结果一致。本研究为X射线荧光光谱法在地球化学标准物质均匀性检验中的应用提供了依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵红坤
郝亚波
田有国
高祥照
刘亚轩
关键词 熔融制样X射线荧光光谱法小取样量主量元素    
Abstract

X ray fluorescence spectrometry (XRF) is one of the important methods to test the homogeneity of geochemical reference materials, but there is still controversy about the application. The homogeneity test requires the prerequisite that the sample weight is the minimum. The result of homogeneity test using conventional powder tableting or melting samples by XRF is generally larger than the minimum sample weight, so the results obtained are not theoretically sufficient to support the homogeneity of the sample under the condition of minimum sample weight. In this study, the 0.1 g samples experienced melted preparation with a mixed flux of Li2B4O7 LiBO2 and LiF (mass ratio 45∶10∶5) and NH4I release agent. The authors established an experiential method to analyzetotally 10 measuring components, i.e., SiO2, Al2O3, TFe2O3, MgO, CaO, Na2O, K2O, Mn, Ti and P. The correlation coefficient of the calibration curve of each component was between 0.997 3 and 1.000 0. The experimental optimization results of sample preparation conditions showed that the ratio of sample to mixed flux was 1∶4, 2 drops of 0.2 g/mL and ammonia iodide were used as the mold release agent, melting at 1 050 ℃ for 10 min., leading to the best molding effect. The method parameters were studied. The relative standard deviation of each component was 0.2%~5.3 %, and the relative error was less than 6.2%. The method precision and method accuracy were high. Compared with the conventional sample weighing of 0.65 g, the experimental results of the two methods are consistent. This study provides the basis for the application of X ray fluorescence spectroscopy to the homogeneity test of geochemical reference materials.

Key wordsfusion preparation sample    X ray fluorescence spectrometry    small sample quantity    major elements
收稿日期: 2020-02-02      出版日期: 2020-08-28
:  P632  
基金资助:“全国土壤污染状况详查”国家专项二级项目“土壤详查统一监控样品研制”
通讯作者: 刘亚轩
作者简介: 赵红坤(1993-),女,汉族,河北唐山人,在读研究生,主要从事XRF方法研究、地球化学标准物质的均匀性检验研究。Email:878063323@qq.com
引用本文:   
赵红坤, 郝亚波, 田有国, 高祥照, 刘亚轩. 熔融制样—X射线荧光光谱法测定小取样量地球化学样品中的主量元素[J]. 物探与化探, 2020, 44(4): 778-783.
Hong-Kun ZHAO, Ya-Bo HAO, You-Guo TIAN, Xiang-Zhao GAO, Ya-Xuan LIU. The application of melting sample preparation-X ray fluorescence spectrometry to measuring a small amount of soil certified reference material. Geophysical and Geochemical Exploration, 2020, 44(4): 778-783.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0042      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I4/778
Fig.1  自制铂—黄金坩埚
元素谱线 电压-电流/(kV-mA) 准直器 晶体 探测器 PHA
Fe-K 60-60 S4 LiF(200) SC 100-350
Mn-K 60-60 S4 LiF(200) SC 100-320
Ti-K 40-90 S4 LiF(200) SC 100-320
Ca-K 30-120 S4 LiF(200) PC 130-300
K-K 30-120 S4 LiF(200) PC 120-300
Si-K 30-120 S4 RX25 PC 120-320
Al-K 30-120 S4 PET PC 120-320
Mg-K 30-120 S4 PX25 PC 100-275
Na-K 30-120 S4 PX25 PC 100-290
P-K 30-120 S4 Ge PC 135-300
Table 1  0.1 g样品熔融制样的最佳仪器参数
Fig.2  当稀释比大于1∶8时制得的部分样片
Fig.3  不同稀释比对各元素测定精密度的影响
熔样温度/℃ Fe-K Ca-K K-K Si-K Al-K
920 存在不熔物
950 存在不熔物
1000 0.29 0.65 0.33 0.44 0.37
1050 0.50 0.61 0.21 0.35 0.80
1100 0.27 0.81 0.35 0.34 0.44
Table 2  不同熔样温度条件下的方法精密度(n=12)
熔样时间/min 预熔时间/min 上举时间/s 摆平时间/s 往复次数/次
5 1 45 15 4
10 2 90 30 4
15 3 135 45 4
20 4 180 60 4
25 5 225 75 4
Table 3  熔样时间过程
Fig.4  不同熔样时间对测定精密度的影响
Fig.5  不同脱模剂用量对测定精密度的影响
组分 线性范围 校准曲线相关系数r
SiO2 32.69~88.89 0.9973
Al2O3 2.84~29.26 0.9993
TFe2O3 1.46~18.76 0.9999
MgO 0.12~3.4 0.9998
CaO 0.1~8.27 1.0000
Na2O 0.039~8.99 0.9997
K2O 0.125~4.31 0.9996
Mn 218~1780 09989
P 166~1520 09979
Ti 1270~20200 0.9997
Table 4  校准曲线线性范围及相关系数
组分 GSD-25 GSD-26
平均值X 相对标准偏差RSD/% 平均值X 相对标准偏差RSD/%
SiO2 68.53 0.6 63.04 0.2
Al2O3 12.59 0.7 14.15 0.4
TFe2O3 3.82 0.9 5.18 0.4
MgO 1.07 2.1 1.80 1.2
CaO 3.49 1.3 3.87 0.4
Na2O 2.05 2.4 0.78 3.9
K2O 3.12 0.7 3.03 0.4
Mn 858 2.5 543 3.8
P 408 5.3 514 2.8
Ti 2401 3.3 3818 2.1
Table 5  方法精密度实验结果(n=12)
组分 GSD-25 GSD-26
认定值 0.65g 0.1g 认定值 0.65g 0.1g
测量值 |RE|/% 测量值 |RE|/% 测量值 |RE|/% 测量值 |RE|/%
SiO2 71.14 68.49 3.7 67.98 4.4 63.48 63.01 0.7 61.97 2.4
Al2O3 12.85 12.61 1.9 12.25 4.6 14.10 14.14 0.3 13.71 2.8
TFe2O3 3.86 3.83 0.9 3.75 2.9 5.16 5.17 0.3 5.04 2.3
MgO 1.07 1.08 0.9 1.04 3.3 1.73 1.79 3.3 1.71 1.2
CaO 3.52 3.49 0.9 3.45 2.1 3.78 3.88 2.6 3.71 2.0
Na2O 2.13 2.05 3.7 2.10 1.3 0.83 0.78 6.2 0.78 6.6
K2O 3.24 3.12 3.8 3.15 2.7 3.04 3.03 0.3 2.93 3.5
Mn 827 856 3.5 828 0.1 519 537 3.4 510 1.7
P 415 411 1.0 390 6.0 498 519 4.2 517 3.8
Ti 2480 2401 3.2 2364 4.7 3680 3807 3.5 3673 0.2
Table 6  方法准确度实验结果
[1] Wang X H, Wang Y M, Gao Y S, et al. Preparation of five China sea and continental shelf sediment reference materials (MSCS-1-5) with ultra-fine particle size distributions[J]. Geostandards and Geoanalytical Research, 2009,33(3):357-368.
[2] 王毅民, 王晓红, 高玉淑, 等. 中国地质标准物质制备技术与方法研究进展[J]. 地质通报, 2010,29(7):1090-1104.
[2] Wang Y M, Wang X H, Gao Y S, et al. Advances in preparing techniques for geochemical reference materials in China[J]. Geological Bulletin of China, 2010,29(7):1090-1104.
[3] Saini N K, Khanna P P, Mukherjee P K, et al. Preparation and characterisation of two geochemical reference materials: DG-H(granite)and AM-H (amphibolite) from the Himalayan orogenic belt[J]. Geostandards and Geoanalytical Research, 2014,38(1):111-122.
[4] Idris A M. Between-bottle homogeneity test of new certified reference materials employing wavelength dispersive X-ray fluorescence spectrometry[J]. BMC chemistry, 2019(1),13-23.
doi: 10.1186/s13065-019-0536-4 pmid: 31384762
[5] 刘妹, 程志中, 顾铁新, 等. 钼矿石与钼精矿成分分析标准物质研制[J]. 岩矿测试, 2013,32(6):944-951.
[5] Liu M, Cheng Z Z, Gu T X, et al. Preparation of molybdenum ore and molybdenum concentrate reference materials[J]. Rock & Mineral Analysis, 2013,32(6):944-951.
[6] Cheng Z Z, Huang H K, Liu M, et al. Preparation of four chromium ore reference materials[J]. Geostandards and Geoanalytical Research, 2013,37(1):95-101.
doi: 10.1111/j.1751-908X.2012.00162.x
[7] Cheng Z Z, Liu M, Huang H.K, et al. Usable values of nickel ore and nickel concentrate certified reference materials[J]. Geostandards and Geoanalytical Research, 2015,39(2):221-232.
[8] 曾美云, 刘金, 邵鑫, 等. 磷矿石化学成分分析标准物质研制[J]. 岩矿测试, 2017,36(6):633-640.
[8] Zeng M Y, Liu J, Shao X, et al. Preparation of phosphate ore reference materials for chemical composition analysis[J]. Rock & Mineral Analysis, 2017,36(6):633-640.
[9] 夏传波, 成学海. X射线荧光光谱法在电气石标准物质均匀性检验中的应用[J]. 化学分析计量, 2016,25(1):1-4.
[9] Xia C B, Cheng X H. Application of X-ray fluorescence spectrometry in the homogeneity test of tourmaline reference materials[J]. Chemical Analysis And Meterage, 2016,25(1):1-4.
[10] 王毅民, 高玉淑, 王晓红. 中国地质标准物质研制和标准方法制定的成果与思考[J]. 岩矿测试, 2006,25(1):55-63.
[10] Wang Y M, Gao Y S, Wang X H. A review on study of geochemical reference materials and reference methods in China[J]. Rock & Mineral Analysis, 2006,25(1):55-63.
[11] 王毅民, 王晓红, 何红蓼, 等. 地质标准物质的最小取样量问题[J]. 地质通报, 2009,28(6):804-807.
[11] Wang Y M, Wang X H, He H L, et al. The minimum sampling mass of geostandards reference materials[J]. Geological Bulletin Of China, 2009,28(6):804-807.
[12] 王晓红, 王毅民, 高玉淑, 等. 地质标准物质均匀性检验方法评介与探讨[J]. 岩矿测试, 2010,29(6):735-741.
[12] Wang X H, Wang Y M, Gao Y S, et al. A review on homogeneity testing techniques for geochemical reference materials in China[J]. Rock & Mineral Analysis, 2010,29(6):735-741.
[1] 王冀艳, 储彬彬, 姚文生, 詹秀春, 刘勉. 利用全反射X射线荧光光谱法研究土壤中活动态元素提取动力学[J]. 物探与化探, 2020, 44(2): 350-355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com