Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (3): 626-634    DOI: 10.11720/wtyht.2020.1372
     工程勘察 本期目录 | 过刊浏览 | 高级检索 |
超声面波法在混凝土强度检测中的应用研究
杨道煌1, 刘江平1, 程飞2, 庞凯旋1
1. 中国地质大学(武汉) 地球物理与空间信息学院,湖北 武汉 430074
2. 中国地质大学(武汉) 海洋学院,湖北 武汉 430074
The application of ultrasonic surface wave method to concrete strength testing
Dao-Huang YANG1, Jiang-Ping LIU1, Fei CHENG2, Kai-Xuan PANG1
1. Institute of Geophysics and Geomatics,China University of Geosciences(Wuhan),Wuhan 430074,China
2. College of Marine Science and Technology,China University of Geosciences(Wuhan),Wuhan 430074,China
全文: PDF(4397 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

混凝土作为建筑工程中的主要材料,其质量情况与人们的生命财产息息相关。强度等级是衡量混凝土品质的重要指标,因此需对混凝土结构体的强度进行检测。基于超声波检测仪得到面波数据,获得目标混凝土结构体的面波频散曲线,并使用阻尼最小二乘法实现面波速度反演,从而获得目标混凝土结构体的横波速度结构,基于弹性模量法和幂函数方程拟合法计算出强度值,进而实现对混凝土强度的评价。结果表明:①采用超声面波法可有效获得混凝土结构体横波速度结构;②弹性模量法和幂函数拟合法均能对混凝土强度进行评价,是一种行之有效的方法,其中弹性模量法能够达到实际精度要求,为混凝土质量检测提供了新途径。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨道煌
刘江平
程飞
庞凯旋
关键词 瑞利波弹性模量幂函数拟合混凝土强度    
Abstract

Concrete is the main material in construction engineering,and its quality is closely related to people's life and property.The strength grade is an important indicator of the quality of the concrete,so the strength of the concrete structure needs to be tested. In this paper,the surface wave velocity inversion is realized by the least square method to obtain the shear wave velocity structure of the target concrete structure,the strength value is calculated based on the elastic modulus method and the power function fitting method,and then the concrete strength is evaluated.The results are as follows:First,the shear wave velocity structure of concrete structure can be obtained effectively by using the ultrasonic surface wave method.Second,both the elastic modulus method and the power function fitting method can evaluate the strength of concrete,which is effective and the elastic modulus method can meet the actual accuracy requirements,thus providing a new way for the quality detection of concrete.

Key wordsRayleigh wave    elastic modulus    power function fitting    concrete strength
收稿日期: 2019-07-22      出版日期: 2020-06-24
:  P631.4  
基金资助:国家自然科学基金项目“三维柱坐标下隧道复杂地质体的地震模拟与响应机理研究”(41704146)
作者简介: 杨道煌(1995-),男,汉族,贵州毕节人,硕士,研究方向为近地表地球物理勘探。Email: yangdaohuang@163.com
引用本文:   
杨道煌, 刘江平, 程飞, 庞凯旋. 超声面波法在混凝土强度检测中的应用研究[J]. 物探与化探, 2020, 44(3): 626-634.
Dao-Huang YANG, Jiang-Ping LIU, Fei CHENG, Kai-Xuan PANG. The application of ultrasonic surface wave method to concrete strength testing. Geophysical and Geochemical Exploration, 2020, 44(3): 626-634.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1372      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I3/626
层号 ρ/(g·cm-3) Vp/(km·s-1) Vs/(km·s-1) 厚度d/cm
第1层 2.0 3.500 2.100 12.0
第2层 2.1 4.200 2.500 18.0
Table 1  两层混凝土梁模型介质参数
Fig.1  两层混凝土梁模型瑞利波地震记录(a)及频散曲线(b)
Fig.2  两层混凝土模型阻尼最小二乘算法反演结果
a—频散曲线数值模拟与反演结果的拟合情况;b—横波速度反演结果
Fig.3  两层混凝土梁模型强度与厚度的关系
Fig.4  瑞利波数据采集
Fig.5  混凝土梁实测瑞利波记录
Fig.6  实测瑞利波频散曲线
Fig.7  混凝土梁CB1阻尼最小二乘算法反演结果
a—实测频散曲线与反演结果的拟合情况;b—横波速度反演结果
Fig.8  混凝土梁CB2阻尼最小二乘算法反演结果
a—实测频散曲线与反演结果的拟合情况;b—横波速度反演结果
研究对象名称 层号 ρ/(g·cm-3) Vp/(km·s-1) Vs/(km·s-1) 厚度d/cm
CB1 第1层 2.05 3.901 2.315 8.0
第2层 2.10 4.305 2.565 15.0
CB2 第1层 2.06 3.912 2.335 10.1
第2层 2.10 4.318 2.602 11.9
Table 2  混凝土梁反演结果
Fig.9  弹性模量与厚度的关系
强度种类 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60
Ec/GPa 22.0 25.5 28.0 30.0 31.5 32.5 33.5 34.5 35.5 36.0
fcu,k/MPa 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0
Table 3  混凝土强度等级
Fig.10  弹性模量法和回弹法计算的强度对比
Fig.11  幂函数拟合法和回弹法计算的强度对比
[1] 杨成林. 瑞利波勘探法原理及其应用[J]. 物探与化探, 1989,13(6):465-468.
[1] Yang C L. The principle and application of Rayleigh wave exploration method[J]. Geophysical and Geochemical Exploration, 1989,13(6):465-468.
[2] 刘云祯, 王振东. 瞬态面波法的数据采集处理系统及应用实例[J]. 物探与化探, 1996,20(1):28-33.
[2] Liu Y Z, Wang Z D. Data collection and processing system of transient surface wave method and examples of its application[J]. Geophysical and Geochemical Exploration, 1996,20(1):28-33.
[3] 赵勇刚, 刘江. 瞬态面波剖面法在滑坡探查中的应用[J]. 物探与化探, 2007,31(s):116-118.
[3] Zhao Y G, Liu J. The application of the transient surface wave to the landslide exploration[J]. Geophysical and Geochemical Exploration, 2007,31(s):116-118.
[4] 刘江平, 罗银河, 何伟兵. 相邻道瞬态瑞雷面波法与压实度检测[J]. 岩土工程学报, 2009,31(11):1652-1659.
[4] Liu J P, Luo Y H, He W B. Method of neighboring trace transient Rayleigh wave and its application in compactness inspection[J]. Chinese Journal of Geotechnical Engineering, 2009,31(11):1652-1659.
[5] 郑立宁, 谢强, 冯治国, 等. 瞬态瑞雷面波法岩溶路基注浆质量检测现场试验研究[J]. 岩土工程学报, 2011,33(12):1934-1937.
[5] Zheng L N, Xie Q, Feng Z G, et al. Field tests on grouting effect of karst roadbed based on transient Rayleigh wave method[J]. Chinese Journal of Geotechnical Engineering, 2011,33(12):1934-1937.
[6] 杨天春, 肖巧玲. 多层层状介质的瑞利面波频散特性[J]. 物探与化探, 2009,33(3):299-303.
[6] Yang T C, Xiao Q L. Dispersion characteristics of Rayleigh waves in multilayered media[J]. Geophysical and Geochemical Exploration, 2009,33(3):299-303.
[7] Tsai W H, Lin Y, Cheng C C. Detecting the depth of weak layer in concrete using R-wave dispersion techniques[J]. NDT&E International, 2018,98:161-170.
doi: 10.1016/j.ndteint.2018.04.014
[8] 宋先海, 肖柏勋, 黄荣荣. 用等厚薄层权重自适应迭代阻尼最小二乘法反演瑞利波频散曲线[J]. 物探与化探, 2003,27(3):212-216.
[8] Song X H, Xiao B X, Huang R R. The inversion of dispersion curves using self-adaptively iterative damping least square method by combining equal thinner layers with weighting matrix[J]. Geophysical and Geochemical Exploration, 2003,27(3):212-216.
[9] 凡友华, 刘雪峰, 陈晓非. 面波频散反演地下层状结构的拟牛顿法[J]. 物探与化探, 2006,30(5):456-459.
[9] Fan Y H, Liu X F, Chen X F. The QUASI newton method in the inversion of the dispersion curve of Rayleigh wave in multilayered media[J]. Geophysical and Geochemical Exploration, 2006,30(5):456-459.
[10] 程飞, 刘江平, 毛茂, 等. 参数自适应差分演化算法在面波频散曲线反演中的应用[J]. 岩土工程学报, 2016,38(1):147-148.
doi: 10.11779/CJGE201601016
[10] Cheng F, Liu J P, Mao M, et al. Self-adapting control parameters-based differential evolution algorithm for inversion of Rayleigh wave dispersion curves[J]. Chinese Journal of Geotechnical Engineering, 2016,38(1):147-148.
doi: 10.11779/CJGE201601016
[11] Garnier V, Piwakowski B, Abraham O. Acoustical techniques for concrete evaluation:Improvements,comparisons and consistency[J]. Construct Build Mater, 2013,43:598-613.
doi: 10.1016/j.conbuildmat.2013.01.035
[12] Métais V, Chekroun M, Le Marrec L, et al. Influence of multiple scattering in heterogeneous concrete on results of the surface wave inverse problem[J]. NDT&E International, 2016,79:53-62.
doi: 10.1016/j.ndteint.2015.12.004
[13] Drelich R, Kaczmarek M, Piwakowski B. Accuracy of parameter identification using the dispersion of surface waves and the role of data quality for inhomogeneous concrete[J]. NDT&E International, 2018,98:195-207.
doi: 10.1016/j.ndteint.2018.05.002
[14] Jaganathan A P. Multichannel surface wave analysis of reinforced concrete pipe segments using longitudinal and circumferential waves induced by a point impact[J]. Journal of Applied Geophysics, 2019,163:40-54.
doi: 10.1016/j.jappgeo.2019.02.010
[15] Park C B, Miller R D, Xia J H, et al. Imaging dispersion curves of surface waves on multi-channel record[J]. SEG Technical Program Expanded Abstracts, 1998,17:1377-1380.
[16] 凡友华, 刘家琦, 肖柏勋. 计算瑞利波频散曲线的快速矢量传递算法[J]. 湖南大学学报, 2002,29(5):25-30.
[16] Fan Y H, Liu J Q, Xiao B X. Fast vector-transfer algorithm for computation of Rayleigh wave dispersion curves[J]. Journal of Hunan University, 2002,29(5):25-30.
[17] Marquardt D W. An algorithm for least squares estimation of nonlinear parameters[J]. J. Soc. Indus. Appl. Math., 1963,( 2):431-441.
[18] Xia J, Miller R D, Park C B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave[J]. Geophysics, 1999,64(3):691-700.
doi: 10.1190/1.1444578
[19] 沈蒲生. 混凝土结构设计新规范(GB50010-2010)解读[M]. 北京: 机械工业出版社, 2011.
[19] Shen P S. >Interpretation of new specification for concrete structure design (GB50010-2010)[M]. Beijing: Machinery Industry Press, 2011.
[20] 徐建华. 瑞利波在建筑工程质量检测中的应用探讨[J]. 山西水利, 1999,3:24-25.
[20] Xu J H. Application of Rayleigh wave in quality inspection of building engineering[J]. Shanxi Water Resources, 1999,3:24-25.
[21] 邓昌宁. 超声回弹综合法检测混凝土强度中波速测量方法研究[J]. 北方交通, 2013(1):42-44.
[21] Deng C N. In detecting strength of concrete by Ultrasonic-rebound combined method velocity of pulses measurement method research[J]. Journal of BEIFANG JIAOTONG, 2013(1):42-44.
[1] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[2] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[3] 栾明龙. 瞬态瑞利波技术在地基强夯质量检测中的应用效果[J]. 物探与化探, 2020, 44(3): 615-625.
[4] 邵广周, 岳亮, 李远林, 吴华. 被动源瑞利波两道法提取频散曲线的质量控制方法[J]. 物探与化探, 2019, 43(6): 1297-1308.
[5] 吴华, 李庆春, 邵广周. 瑞利波波形反演的发展现状及展望[J]. 物探与化探, 2018, 42(6): 1103-1111.
[6] 邵广周, 董晋, 董兆堂. 利用瑞利波广义S变换探测近地表裂缝[J]. 物探与化探, 2018, 42(2): 398-404.
[7] 栾明龙, 魏红, 林万顺. 瞬态瑞利波技术在工程勘察中的应用[J]. 物探与化探, 2012, 36(5): 878-883.
[8] 贾辉, 何正勤, 陈义军, 张辉, 刘国, 孙增伟. 多道瞬态瑞利波法场地数据采集参数实验[J]. 物探与化探, 2010, 34(4): 553-556.
[9] 翟佳羽, 赵园园, 安丁酉. 面波频散反演地下层状结构的蚁群算法[J]. 物探与化探, 2010, 34(4): 476-481.
[10] 戴天, 厉隽. 瑞利波法检验客运专线湿陷性黄土地基处理效果[J]. 物探与化探, 2009, 33(5): 603-607.
[11] 杨天春, 肖巧玲. 多层层状介质的瑞利面波频散特性[J]. 物探与化探, 2009, 33(3): 299-303.
[12] 牟斌, 于治通, 彭海洋, 田建, 丁武保. 综合物探方法在天津市浅层贝壳堤地质环境调查中的应用[J]. 物探与化探, 2009, 33(1): 109-112.
[13] 杨天春, 肖巧玲. 存在流体介质夹层时瑞利波频散曲线的完整求解[J]. 物探与化探, 2009, 33(1): 80-84.
[14] 杨天春, 王齐仁, 肖江, 徐卓荣. 两种计算瑞利波理论频散曲线的传递法模拟对比[J]. 物探与化探, 2008, 32(4): 424-429.
[15] 孙福印, 王振德, 李玉堂. 偏心式激振器在稳态瑞利波勘探中的应用[J]. 物探与化探, 2008, 32(3): 341-344.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com