一种低温超导航磁梯度张量数据补偿模型
|
侯瑞东, 郭子祺, 乔彦超, 刘建英
|
A compensation model of aeromagnetic gradient tensor data based on low-temperature superconducting
|
HOU Rui-Dong, GUO Zi-Qi, QIAO Yan-Chao, LIU Jian-Ying
|
|
表1 2 000 m高度磁梯度数据统计
|
|
|
| G1 | G2 | G3 | G4 | G5 | G6 | mean | 补偿前σ | Line1 | 0.5761 | 0.8201 | 1.1711 | 0.7814 | 0.9162 | 0.7253 | 0.8317 | Line2 | 0.7229 | 0.4262 | 0.6916 | 0.8545 | 0.6699 | 0.8314 | 0.6994 | Line3 | 0.7033 | 0.5446 | 0.6784 | 0.7712 | 1.3354 | 0.7168 | 0.7916 | Line4 | 0.4413 | 0.7411 | 0.8144 | 0.7838 | 0.6123 | 0.7393 | 0.6887 | 补偿后σ | Line1 | 0.0031 | 0.0029 | 0.005 | 0.0034 | 0.0115 | 0.0043 | 0.0050 | Line2 | 0.0013 | 0.0005 | 0.0015 | 0.002 | 0.0022 | 0.002 | 0.0016 | Line3 | 0.0014 | 0.0015 | 0.0021 | 0.002 | 0.0026 | 0.0026 | 0.0020 | Line4 | 0.0014 | 0.001 | 0.0015 | 0.0026 | 0.0036 | 0.0023 | 0.0021 | 改善比IR | Line1 | 185.84 | 282.79 | 234.22 | 229.82 | 79.67 | 168.67 | 373.0675 | Line2 | 556.08 | 852.40 | 461.07 | 427.25 | 304.50 | 415.70 | Line3 | 502.36 | 363.07 | 323.05 | 385.60 | 513.62 | 275.69 | Line4 | 315.21 | 741.10 | 542.93 | 301.46 | 170.08 | 321.43 |
|
|
|