基于自适应核密度的贝叶斯概率模型岩性识别方法研究
|
蔡泽园 1,2,3(  ), 鲁宝亮 1,2,3(  ), 熊盛青 4, 王万银 1,2,3
|
Lithology identification based on Bayesian probability using adaptive kernel density
|
Ze-Yuan CAI 1,2,3(  ), Bao-Liang LU 1,2,3(  ), Sheng-Qing XIONG 4, Wan-Yin WANG 1,2,3
|
|
图9. 869点训练样本分类结果 a~f分别表示对于869个训练样本点的传统高斯分类、固定带宽的核密度估计、自适应带宽的核密度估计的贝叶斯分类结果以及其对应的概率分布
|
Fig.9. Classification results of 435 training samples Figures a~frespectively represent the Bayesian classification results, corresponding probability distribution map of the traditional Gaussian classification, fixed bandwidth kernel density estimation, adaptive bandwidth kernel density estimation for 869 training sample points
|
|
 |
|
|