|
|
Methane and radon anomaly characteristics derived based on the microleakage mechanism and their implications for the exploration of hidden disaster-causing factors in coal mines |
HE Hui-Ce1,2(), SUN Chun-Yan3(), TANG Yao4, ZHANG Zong-Qing5, YE Bei-Bei5, ZHAO Hao6, Wang Dong-Lin6 |
1. Sanya Institute of South China Sea Geology, Guangzhou Marine Geological Survey, China Geological Survey, Sanya 572024, China 2. Key Laboratory of Marine Mineral Resoures, Ministry of Natural Resources, Guangzhou 511458, China 3. School of Engineering and Technology, China University of Geosciences(Beijing), Beijing 100083, China 4. Changsha Natural Resources Comprehensive Survey Center, China Geological Survey, Changsha 410600, China 5. The Nuclear Industry 247 Brigade of Tianjin North China Geological Exploration Bureau,Tianjin 301800, China 6. Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an 710100, China |
|
|
Abstract Hidden disaster-causing factors in coal minesdenote the geological structures and unfavorable geobodies that are concealed in coal seams and surrounding rocks and may cause mine disasters during mining. Methane and radon are common harmful gases in coal mines, and their abnormal release is often accompanied by hidden disasters like unfavorable structures of coal seams and gas accumulation. With the Xinyuan coal mine in Yangquan City as the study area, this study selected two geochemical indices based on the microseepage mechanism:Methane and radon, which are highly sensitive to hidden disaster-causing geological factors. Building on the dynamic monitoring data of methane and radon in free hydrocarbons at 408 points, and the area survey data of methane in free and acid-hydrolyzed hydrocarbons at 416 points and soil radon at 651 points, this study obtained the geochemical characteristics reflecting the distributions of disaster-causing factors like the underlying water-bearing fracture zones, coal bed methane see page zones, microstructural fracture zones, and collapse column surround zones. Moreover, this study conducted joint exploration and analysis combined with the wide-field electromagnetic method, completing the verification and identification of hidden disaster-causing factors related to structures and gas accumulation in coal mines. Furthermore, it delineated the distribution sections of potential disaster-causing factors in the study area. This study demonstrates the applicability and practicability of the hydrocarbon microseepage theory in the exploration of hidden disaster-causing factors in coal mines. It also lays a foundation for the extensive application of methane-radon geochemical indices in the survey and exploration of hidden disaster-causing factors in coal mines, thus holding critical significance for enhancing the safety of coal mine production.
|
Received: 10 July 2024
Published: 21 October 2024
|
|
|
|
|
|
Relationship between disaster-causing factors and geochemical indexes of coal measures
|
|
Geological sketch of the working area
|
|
Layout diagram of geochemical exploration measurement points
|
|
Interpretation of geoelectric profile in version with wide field electromagnetic method for survey 1120 and 1125 lines
|
土壤游离烃甲烷第一次测量数据统计特征(2020.11.02~11.07) | 线号 | 点数 | 最大值/10-6 | 最小值/10-6 | 均值/10-6 | 标准差/10-6 | 异常下限/10-6 | 1120 | 51.0 | 247.10 | 16.32 | 86.39 | 54.22 | 140.62 | 1125 | 51.0 | 328.00 | 22.35 | 120.33 | 69.60 | 189.93 | 土壤游离烃甲烷第二次测量数据统计特征(2020.12.12~12.13) | 线号 | 点数 | 最大值/10-6 | 最小值/10-6 | 均值/10-6 | 标准差/10-6 | 异常下限/10-6 | 1120 | 51.0 | 318.10 | 11.83 | 77.77 | 62.91 | 140.68 | 1125 | 51.0 | 278.50 | 13.36 | 80.06 | 65.81 | 145.87 | 土壤游离烃甲烷第三次测量数据统计特征(2021.03.12~03.15) | 线号 | 点数 | 最大值/10-6 | 最小值/10-6 | 均值/10-6 | 标准差/10-6 | 异常下限/10-6 | 1120 | 51.0 | 314.80 | 10.94 | 73.40 | 66.53 | 139.92 | 1125 | 51.0 | 261.30 | 12.01 | 76.07 | 57.08 | 133.88 | 土壤游离烃甲烷第四次测量数据统计特征(2021.04.07~04.08) | 线号 | 点数 | 最大值/10-6 | 最小值/10-6 | 均值/10-6 | 标准差/10-6 | 异常下限/10-6 | 1120 | 51.0 | 112.70 | 6.69 | 45.93 | 25.72 | 71.66 | 1125 | 51.0 | 155.20 | 8.72 | 45.21 | 33.07 | 78.28 |
|
Statistical characteristics of four measurements of soil free methane in dynamic monitoring profile
|
土壤氡气第一次测量数据统计特征(2020.11.07~11.11) | 线号 | 点数 | 最大值/ (Bq·m-3) | 最小值/ (Bq·m-3) | 均值/ (Bq·m-3) | 标准差/ (Bq·m-3) | 异常下限/ (Bq·m-3) | 1120 | 51.0 | 23714.7 | 895.5 | 6792.5 | 4252.4 | 11044.9 | 1125 | 51.0 | 16778.4 | 1590.1 | 6472.0 | 2770.9 | 9242.9 | 土壤氡气第二次测量数据统计特征(2020.12.14~12.19) | 线号 | 点数 | 最大值/ (Bq·m-3) | 最小值/ (Bq·m-3) | 均值/ (Bq·m-3) | 标准差/ (Bq·m-3) | 异常下限/ (Bq·m-3) | 1120 | 51.0 | 27809.7 | 1757.2 | 10876.2 | 6994.5 | 17870.7 | 1125 | 51.0 | 24117.3 | 1331.2 | 9524.5 | 5425.4 | 14949.9 | 土壤氡气第三次测量数据统计特征(2021.03.07~03.14) | 线号 | 点数 | 最大值/ (Bq·m-3) | 最小值/ (Bq·m-3) | 均值/ (Bq·m-3) | 标准差/ (Bq·m-3) | 异常下限/ (Bq·m-3) | 1120 | 51.0 | 24819.6 | 1962.7 | 11593.4 | 5484.9 | 17078.3 | 1125 | 51.0 | 21025.9 | 1726.6 | 10352.8 | 4551.6 | 14904.4 | 土壤氡气第四次测量数据统计特征(2021.4.9~2021.4.13) | 线号 | 点数 | 最大值/ (Bq·m-3) | 最小值/ (Bq·m-3) | 均值/ (Bq·m-3) | 标准差/ (Bq·m-3) | 异常下限/ (Bq·m-3) | 1120 | 51.0 | 27322.1 | 3465.4 | 8747.4 | 4792.8 | 13540.2 | 1125 | 51.0 | 21071.9 | 3977.6 | 8754.8 | 3939.6 | 12694.4 |
|
Statistical characteristics of four measurements of soil radon gas in dynamic monitoring profile
|
|
Combined profile of four dynamic measurements of soil free methane in 1120 and 1125 lines
|
|
Combined profile of four dynamic monitoring of soil radon gas in 1120 and 1125 lines
|
|
Superimposed map of methane-radon anomaly in 1120 survey line and widefield electromagnetic inversion interpretation profile
|
|
Superimposed map of methane-radon anomaly in 1125 survey line and widefield electromagnetic inversion interpretation profile
|
指标 | 点数 | 工作区面积/km2 | 最高值 | 最低值 | 均值 | 标准差 | 异常下限 | 衬度 | 氡气 | 651 | 1.5 | 24783.05 | 940.45 | 7106.55 | 2437.84 | 9000.00 | 3.49 | 游离烃甲烷 | 416 | 1.5 | 400.00 | 7.48 | 89.20 | 66.11 | 150.00 | 4.48 | 酸解烃甲烷 | 416 | 1.5 | 5475.00 | 36.17 | 1655.80 | 1059.85 | 2600.00 | 3.30 |
|
Numerical and statistical characteristics of geochemical indicators in area survey working area
|
| 背景值/(Bq·m-3) | 异常下限/(Bq·m-3) | 外带异常/(Bq·m-3) | 中带异常/(Bq·m-3) | 内带异常/(Bq·m-3) | 计算值 | 4406.43 | 9275.68 | 9275.68~14151.36 | 14151.36~19027.04 | ≥19027.04 | 使用值 | 4400.00 | 9000.00 | 9000.00~14000.00 | 14000.00~19000.00 | ≥19000.00 |
|
Lower limit of anomaly and concentration zoning calculation and actual partition values
|
|
Abnormal distribution of free hydrocarbon methane concentration
|
|
Abnormal distribution of acidulated hydrocarbon methane concentration
|
|
Contour map of soil radon concentration gradient change
|
|
Horizontal slice inversion with wide field electromagnetic method and comprehensive anomaly map of methane radon gas index
|
[1] |
国家安全监管总局. 国家煤矿安监局关于印发煤矿地质工作规定的通知(安监总煤调〔2013〕135号)[N/OL]. 国家安全生产监督管理总局国家煤矿安全监察局公告, 2013.12.31. http://www.mem.gov.cn/gk/gwgg/agwzlfl/gfxwj/2014/201401/t20140117_242920.shtml
|
[1] |
State Administration of Safety Supervision. Coal mine safety administration on the issuance of coal mine geological work regulations notice (State Administration of Coal Mine Safety (2013) No.135)[N/OL]. State Administration of Work Safety State Coal Mine Safety Administration Announcement,2013.12.31. http://www.mem.gov.cn/gk/gwgg/agwzlfl/gfxwj/2014/201401/t20140117_242920.shtml
|
[2] |
国家安全生产监督管理总局信息研究院. 煤矿隐蔽致灾因素与探查[M]. 北京: 煤炭工业出版社, 2014.
|
[2] |
State Administration of Work Safety Information Research Institute. Hidden disaster factors and exploration in coal mine[M]. Beijing: Coal Industry Press, 2014.
|
[3] |
张群, 张培河, 孙四清, 等. 煤矿地质工作规定释义[M]. 北京: 煤炭工业出版社,2014:48-81.
|
[3] |
Zhang Q, Zhang P H, Sun S Q, et al. Interpretation of coal mine geological work regulations[M]. Beijing: Coal Industry Press,2014:48-81.
|
[4] |
黄金, 金明超, 武天红. 瑞平贾岭南煤业隐蔽致灾地质因素探查与防控[J]. 能源技术与管理, 2021, 46(2):133-135.
|
[4] |
Huang J, Jin M C, Wu T H., Exploration and prevention of hidden geological factors of disaster in Jialing South Coal industry in Ruiping[J]. Energy Technology and Management, 2021, 46(2):133-135.
|
[5] |
刘海涛, 张帆. 霍州煤电晋北矿区隐蔽致灾地质因素及防治措施[J]. 山西煤炭, 2021, 41(3):109-115.
|
[5] |
Liu H T, Zhang F. Hidden disaster-causing geological factors and control measures in Jinbei mining area of Huozhou coal electricity group[J]. Shanxi Coal, 2021, 41(3):109-115.
|
[6] |
Battig E, Schijns H, Grant M, et al. High-productivity, high-resolution 3D seismic surveys for open-cut coal operations[J]. ASEG Extended Abstracts, 2019(1):1-4.
|
[7] |
段建华, 许超. 地面物探技术在煤矿隐蔽致灾地质因素探测中的应用[J]. 中国煤炭地质, 2015, 27(10):53-57.
|
[7] |
Duan J H, Xu C. Application of surface geophysical prospecting in coalmine hidden hazard factor detection[J]. Coal Geology of China, 2015, 27(10):53-57.
|
[8] |
侯泽明, 杨德义. 山西煤矿采区高密度三维地震勘探综述[J]. 煤田地质与勘探, 2020, 48(6):15-24.
|
[8] |
Hou Z M, Yang D Y. Summary of high density 3Dseismic exploration in the mining districts of coal mines in Shanxi Province[J]. Coal Geology & Exploration, 2020, 48(6):15-24.
|
[9] |
李帝铨, 肖教育, 张继峰, 等. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5):1359-1366.
|
[9] |
Li D Q, Xiao J Y, Zhang J F, et al. Comparison of application effects of WFEM and CSAMT in water-rich area of Xinyuan coal mine[J]. Geophysical and Geochemical Exploration, 2021, 45(5) : 1359-1366.
|
[10] |
李金刚, 李伟. 三维地震技术在布尔台煤矿四盘区中的勘探应用[J]. 煤炭科学技术, 2021, 49(S2):247-251.
|
[10] |
Li J G, Li W. Application of 3D seismic technology to exploration in fourth panel of Buertai Coalfield[J]. Coal Science and Technology, 2021, 49(S2):247-251.
|
[11] |
刘国勇, 杨明瑞, 王永刚. 高密度电法在煤矿积水采空区探测中的应用[J]. 矿业安全与环保, 2019, 46(5):90-94.
|
[11] |
Liu G Y, Yang M R, Wang Y G. Application of high density resistivity method for water accumulated goaf detection in coal mine[J]. Mining Safety & Environmental Protection, 2019, 46(5):90-94.
|
[12] |
屈花荣, 沈永坤. 综合物勘方法在煤矿隐蔽致灾地质因素探查中的应用研究[J]. 煤炭与化工, 2022, 45(1):87-91.
|
[12] |
Qu H R, Shen Y K. Application research of comprehensive physical exploration method in exploration of geological factors hiddenly causing damage in coal mine[J]. Coal and Chemical Industry, 2022, 45(1):87-91.
|
[13] |
任予鑫, 康向南, 马昆, 等. 瞬变电磁法在矿井水探查中的应用[J]. 现代矿业, 2022, 38(2):237-241.
|
[13] |
Ren Y X, Kang X N, Ma K, et al. Application of transient electromagnetic method in mine water exploration[J]. Modern Mining, 2022, 38(2):237-241.
|
[14] |
薛国强, 李海, 陈卫营, 等. 煤矿含水体瞬变电磁探测技术研究进展[J]. 煤炭学报, 2021, 46(1):77-85.
|
[14] |
Xue G Q, Li H, Chen W Y, et al. Progress of transient electromagnetic detection technology for water-bearing bodies in coal mines[J]. Journal of China Coal Society, 2021, 46(1):77-85.
|
[15] |
郑金宝, 李运肖. 三维地震物探技术在宁夏金凤煤矿三分区勘探中的应用研究[J]. 能源与环保, 2022, 44(3):81-86.
|
[15] |
Zheng J B, Li Y X. Application of three-dimensional seismic geophysical exploration technology in exploration of Ningxia Jinfeng coal mine[J]. China Energy and Environmental Protection, 2022, 44(3):81-86.
|
[16] |
Li D, Zhang Q. Application of the wide field electromagnetic method for oil and gas exploration in a red-bed basin of South China[J]. Journal of Environmental &Engineering Geophysics, 2021(1):26.
|
[17] |
Gresov A I, Obzhirov A I, Yatsuk A V, et al. Gas content of bottom sediments and geochemical indicators of oil and gas on the shelf of the East Siberian Sea[J]. Russian Journal of Pacific Geology, 2017, 11(4):308-314.
|
[18] |
Gresov A I, Yatsuk A V. Geochemistry and genesis of hydrocarbon gases of the Chaun Depression and Ayon Sedimentary Basin of the East Siberian Sea[J]. Russian Journal of Pacific Geology, 2020, 14(1):87-96.
|
[19] |
李武, 王国建, 蒋涛, 等. 塔里木盆地玉北地区活动态油气化探指标应用效果分析[J]. 物探与化探, 2022, 46(2):296-303.
|
[19] |
Li W, Wang G J, Jiang T, et al. Application of the mobile form indicators ingeochemical prospecting of hydrocarbons in Yubei area,Tarim Basin[J]. Geo-physical and Geochemical Exploration, 2022, 46(2):296-303.
|
[20] |
王国建, 程同锦, 卢丽, 等. 烃类垂向微渗漏近地表显示与运移通道的关系——以苏北盆地盐城凹陷朱家墩气田为例[J]. 石油实验地质, 2008(3):302-306.
|
[20] |
Wang G J, Cheng T J, Lu L, et al. Relationship between near-surface expressions of hydrocarbon microseepage and migration pathways—A case study in the Zhujiadun gas field,the Yancheng Sag,the northern Jiangsu Basin[J]. Petroleum Geology &experiment, 2008(3):302-306.
|
[21] |
王国建, 卢丽, 杨俊, 等. 壤中游离气方法及其在油气化探中的应用[J]. 物探与化探, 2021, 45(1):11-17.
|
[21] |
Wang G J, Lu L, Yang J, et al. The soil gas method and its application to geochemical prospecting for oil and gas[J]. Geophysical and Geochemical Exploration, 2021, 45(1):11-17.
|
[22] |
YatsukA V, GresovA I, et al. Gas-geochemical anomalies of hydrocarbon gases in the bottom sediments of the Lomonosov Ridge and Podvodnikov Basin of the Arctic Ocean[J]. Doklady Earth Sciences, 2022, 501(2):1081-1086.
|
[23] |
孙春岩, 赵浩, 贺会策, 等. 洞庭盆地生物气地球化学勘探及资源远景评价[J]. 物探与化探, 2018, 42(1):1-13.
|
[23] |
Sun C Y, Zhao H, He H C, et al. Geochemical exploration and resource potential evaluation of biogenic gas in Dongting Lake Basin[J]. Geophysical and Geochemical Exploration, 2018, 42(1):1-13.
|
[24] |
周亚龙, 张富贵, 杨志斌, 等. 祁连山冻土区天然气水合物游离气测量技术试验[J]. 物探与化探. 2017, 41(6):1075-1080.
|
[24] |
Zhou Y L, Zhang F G, Yang Z B, et al. Test of natural hydrate free-gas measuring technique in permafrost region of Qilian Mountain[J]. Geophysical and Geochemical Exploration, 2017, 41(6):1075-1080.
|
[25] |
孙春岩, 赵浩, 贺会策, 等. 海洋底水原位探测技术与中国南海天然气水合物勘探[J]. 地学前缘, 2017, 24(6):225-241.
|
[25] |
Sun C Y, Zhao H, He H C, et al. In-situ detection of ocean floor seawater and gashydrate exploration in the South China Sea[J]. Earth Science Frontiers, 2017, 24(6):225-241.
|
[26] |
孙春岩, 王栋琳, 张仕强, 等. 深海甲烷电化学原位长期监测技术及其在海洋环境调查和天然气水合物勘探中的意义[J]. 物探与化探, 2019, 43(01):1-16.
|
[26] |
Sun C Y, Wang D L, Zhang S Q, et al. Deep sea methane electrochemical in-situ long-term monitoring technology and its significance in the ocean environmental investigation and gas hydrate exploration[J]. Geophysical and Geochemical Exploration, 2019, 43(1):1-16.
|
[27] |
陈安定, 李剑锋. 天然气运移的地球化学指标研究[J]. 天然气地球科学, 1994, 5(4):38-67.
|
[27] |
Chen A D, Li J F. Study on geochemical indexes of natural gas migration[J]. Natural Gas Geoscience, 1994, 5(4):38-67.
|
[28] |
李宗亮, 蒋有录. 天然气运移地球化学示踪方法及其应用[J]. 新疆石油地质, 2008, 29(6):753-755.
|
[28] |
Li Z L, Jiang Y L. Methods and applications of geochemical trace for natural gas migration[J]. Xinjiang Petroleum Geology, 2008, 29(6):753-755.
|
[29] |
宋岩, 徐永昌. 天然气成因类型及其鉴别[J]. 石油勘探与开发, 2005, 32(4):24-29.
|
[29] |
Song Y, Xu Y C. Origin and identification of natural gases[J]. Petroleum Exploration and Development, 2005, 32(4):24-29.
|
[30] |
赵克斌, 孙长青. 油气化探在天然气勘探中的应用[J]. 石油实验地质, 2004, 26(6):574-579.
|
[30] |
Zhao K B, Sun C Q. Application of hydrocarbon geochemical exploration technique in natural gas exploration[J]. Petroleum Geology & Experiment, 2004, 26(6):574-579.
|
[31] |
王俊峰. 煤地下自燃时覆岩中氡气运移规律及应用研究[D]. 太原: 太原理工大学, 2010.
|
[31] |
Wang J F. Radon migration in overlying strata during spontaneous combustion of coal underground and its application[D]. TaiYuan: Taiyuan University of Technology, 2010.
|
[32] |
苏彦丁, 李淑燕, 李建国. 氡气放射性测量在煤矿采空区探测中的应用[J]. 中国煤炭地质, 2015, 27(10):70-75.
|
[32] |
Su YD, Li S Y, Li J G. Application of radon radioactivity measurement in coalmine gob area detection[J]. Coal Geology of China, 2015, 27(10):70-75.
|
[33] |
张俊英, 方熙杨, 王海宾, 等. 基于同位素测氡的煤矿火区圈划方法对比研究[J]. 中国安全科学学报, 2021, 31(1): 38-44.
|
[33] |
Zhang J Y, Fang X Y, Wang H B, et al. Comparative study of coal mine fire areas zoning methods based on isotopic radon measurement technique[J]. China Safety Science Journal, 2021, 31(1):38-44.
|
[34] |
杨增强, 曹明, 刘磊. 采用氡气预测煤矿自然发火[J]. 煤矿安全. 2010, 41(7):45-47.
|
[34] |
Yang Z Q, Cao M, Liu L. Prediction of spontaneous ignition in coal mine using radon gas[J]. Safety in Coal Mine, 2010, 41(7):45-47.
|
[35] |
周斌. 采空区煤自燃氡气析出机理及运移规律研究[D]. 太原: 太原理工大学, 2021.
|
[35] |
Zhou B. Study on radon exhalation mechanism and migration law during coal spontaneous combustion in goaf[D]. Taiyuan: Taiyuan University of Technology, 2021.
|
[36] |
陈继福. 煤田地质学[M]. 北京: 化学工业出版社, 2016.
|
[36] |
Chen J F. Coal geology[M]. Beijing: Chemical Industry Press, 2016.
|
[37] |
傅雪海, 秦勇, 韦重韬. 煤层气地质学[M]. 徐州: 中国矿业大学出版社, 2007.
|
[37] |
Fu XH, Qin Y, Wei CT. Coalbed methane geology[M]. Xuzhou: China University of Mining and Technology Press, 2007.
|
[38] |
孙春岩, 贺会策, 宋腾, 等. ODP/IODP典型水合物站位稳定带界限和水合物分布的地球化学识别标志[J]. 地学前缘. 2017, 24(2):234-245.
|
[38] |
Sun C Y, He H C, Song T, et al. Geochemical indicators of the gas hydrate stable zone and its distribution in the typical drilling sites of ODP / IODP. Earth Science Frontiers, 2017, 24 (2): 234-245.
|
[39] |
孙春岩, 唐侥, 赵浩, 等. 广域电磁法在洞庭盆地北部生物气勘探中应用及远景靶区预测[J]. 地学前缘, 2018, 25(4):210-225.
|
[39] |
Sun C Y, Tang Y, Zhao H, et al. Application of wide-field electromagnetic method to biogas exploration and predictionof prospective target area in the northern Dongting Basin. Earth Science Frontiers, 25 (4):210-225.
|
[40] |
Perrier F, Richon P. Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: Coupled processes of natural ventilation,barometric pumping and internal mixing.[J]. Journal of Environmental Radioactivity, 2010, 101(4): 279-296.
|
[41] |
孙立东. 自然放射性法探测煤矿隐伏水体的探讨[J]. 矿山测量. 1990, 2(3):55-56.
|
[41] |
Sun L D. Discussion on detection of hidden water body in coal mine by natural radioactivity method[J]. Mine Surveying. 1990, 2(3):55-56.
|
[42] |
李兆令, 郭文建, 王石. 氡气测量和瞬变电磁综合探测技术在煤炭采空区调查中的应用研究[J]. 工程勘察, 2022, 50(5):73-78.
|
[42] |
Li Z L, Guo W J, Wang S. Application study of radon measurement method and time domain electromagnetic method in coal mined out area investigation[J]. Geotechnical Engineering Survey, 2022, 50(5):73-78.
|
[43] |
魏建平, 蔡东林, 姚邦华, 等. 煤矿井下放射性活度水平及氡析出规律试验研究[J]. 河南理工大学学报:自然科学版, 2017, 36(1): 1-6.
|
[43] |
Wei J P, Cai D L, Yao B H, et al. Experimental study on radioactivity and radon concentration variation in coal mines[J]. Journal of Henan Polytechnic University:Natural Science, 2017, 36(1):1-6.
|
[44] |
张东升, 张炜, 马立强, 等. 覆岩采动裂隙氡气探测研究进展及展望[J]. 中国矿业大学学报, 2016, 45(6):1082-1097.
|
[44] |
Zhang D S, Zhang W, Ma L Q, et al. Developments and prospects of detecting mining - induced fractures in overlying strata by radon[J]. Journal of China University of Mining & Technology, 2016, 45(6):1082-1097.
|
[45] |
张炜. 覆岩采动裂隙及其含水性的氡气地表探测机理研究[D]. 北京: 中国矿业大学, 2012.
|
[45] |
Zhang W. Mechanism research on detecting mining-induced fractures and its aquosity in overlying strata by radon on surface[D]. Beijing: China University of Mining and Technology, 2012.
|
[1] |
XUE Dong-Xu, LIU Cheng, GUO Fa, WANG Jun, XU Duo-Xun, YANG Sheng-Fei, ZHANG Pei. Predicting the geothermal resources of the Tangyu geothermal field in Meixian County, Shaanxi Province, based on soil radon measurement and the controlled source audio magnetotelluric method[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1169-1178. |
[2] |
LIU Wei, HUANG Tao, WANG Ting-Yong, LIU Yi, ZHANG Ji, LIU Wen-Tao, ZHANG Qi-Bin, LI Qiang. The application of integrated geophysical prospecting methods to the exploration of urban buried fault[J]. Geophysical and Geochemical Exploration, 2021, 45(4): 1077-1087. |
|
|
|
|