E-mail Alert Rss
 

物探与化探, 2018, 42(3): 461-472 doi: 10.11720/wtyht.2018.1325

地质调查·资源勘查

黑龙江新城沟地区花岗岩成矿地球化学特征分析及资源潜力预测

郝义, 王显民, 王金香

山东省煤田地质局第一勘探队,山东 滕州 277500

Metallogenic geochemical characteristics and potential resources prediction of granites in Xinchenggou area, Heilongjiang Province

HAO Yi, WANG Xian-Min, WANG Jin-Xiang

No. 1 Prospecting Party of Shandong Coal Geology Bureau, Tengzhou 277500,China

责任编辑: 蒋实

收稿日期: 2017-07-19   修回日期: 2017-10-29   网络出版日期: 2018-06-05

基金资助: 山东省国土资源厅地勘基金项目.  鲁勘字201558号

Received: 2017-07-19   Revised: 2017-10-29   Online: 2018-06-05

Fund supported: .  鲁勘字201558号

作者简介 About authors

郝义(1982-),男,工程师,2010年毕业于中国海洋大学,从事地质调查与矿产勘查工作。Email:chhy0533@163.com

摘要

东宁新城沟地区的花岗岩体位于兴蒙造山带东缘的活动大陆边缘带。通过岩相学和岩石地球化学分析认为,研究区内岩体的里特曼指数δ介于1.41~2.11之间,为钙碱性岩系;w(K2O)/w(Na2O)比值大于1,为高碱相对富钾;铝饱和指数ACNK=1.02~1.20,主要为弱过铝质I型花岗岩,部分具有S型同碰撞花岗岩的特征。岩体中稀土总量较低(∑REE=72.35×10 -6~217.64×10 -6),轻、重稀土分异较强(LaN/YbN=2.74~11.37),Eu具有较为明显的负异常,δCe为0.96~1.11,Ce异常不明显;Nb、Ta、P、Ti等相对亏损,Rb、Ba、K等相对富集,w(Nb)/w(Ta)比值为(6.18~26.33,平均为15.18)小于16.2,指示岩浆来源于上地幔或下地壳,形成过程中同化混染了较多壳源物质。区内岩浆的形成受古生代末和中生代初西伯利亚板块与华北板块发生陆陆碰撞以及晚三叠世古太平洋板块向欧亚大陆东缘俯冲的双重作用影响,岩浆侵入存在由早期向晚期阶段演化的过程,致使源岩存在一定差异,具有多期次、多阶段、复合成因的特点。物化探异常、岩石地球化学及含矿性参数显示,研究区具有寻找浅成低温热液型Au、Ag、Cu矿的资源潜力。

关键词: 新城沟地区 ; 活动大陆边缘 ; 花岗岩 ; 地球化学特征 ; 资源潜力

Abstract

The granites in Xinchenggou area of Dongning County are located on the active continental margin of eastern part of Xing'anling-Mongolian orogenic belt. In this paper, petrologic and element geochemical studies were carried out for granites in Xinchenggou area, Dongning County. Major element geochemistry shows that the rocks are calc-alkaline and I-type granites, and are also characterized by enrichment of alkali, relative enrichment of potassium and S-type syn-collisional granites. The Rittman index δ is from 1.41 to 2.11. The alumina saturation index ACNK is from 1.02 to 1.20. REE concentrations are low ( ΣREE=72.35×10 -6~217.64×10 -6 ) and show obvious differentiation between LREE and HREE ( LaN/YbN=2.74~11.37 ), with apparent Eu negative anomalies ( δEu=0.14~0.83 ), and the abnormality of δCe (δCe =0.96~1.11) is not apparent. In addition, the rock mass is relatively poor in such elements as Nb, Ta, P and Ti, and rich in Rb, Ba and K . w(Nb)/w(Ta) ratios of trace elements are less than 16.2, suggesting that the magmas were formed by partial melting of the crust. The magmas were formed by collision between the North China plate and Siberia plate in Late Paleozoic-Early Mesozoic period and subduction of the paleo-Pacific plate towards the east edge of Eurasia in Late Triassic. The magmas also had the characteristics of multi-stages and complex genesis. Geophysical and geochemical anomaly, geochemical characteristics, and geochemical ore parameters indicate that this area has prospecting potential for epithermal-type Au-Ag-Cu deposits.

Keywords: Xinchenggou area ; active continental margin ; granite ; geochemical characteristics ; resource potential

PDF (7199KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

郝义, 王显民, 王金香. 黑龙江新城沟地区花岗岩成矿地球化学特征分析及资源潜力预测. 物探与化探[J], 2018, 42(3): 461-472 doi:10.11720/wtyht.2018.1325

HAO Yi, WANG Xian-Min, WANG Jin-Xiang. Metallogenic geochemical characteristics and potential resources prediction of granites in Xinchenggou area, Heilongjiang Province. Geophysical and Geochemical Exploration[J], 2018, 42(3): 461-472 doi:10.11720/wtyht.2018.1325

0 引言

东宁新城沟地区位于黑龙江省牡丹江市东南部,与俄罗斯远东地区相邻。研究区附近矿产资源丰富,已经发现了多处浅成低温热液型金银矿床(图1)。该区属于滨太平洋成矿带的重要金属成矿区,形成的斑岩型—浅成低温热液型矿床多与中生代岩浆侵入—次火山—火山活动有关。笔者在综合分析目前研究区附近各主要矿床特征的基础上,依托东宁新城沟地区的地质调查资料,对该区花岗岩的岩石地球化学特征进行研究,探讨其岩石成因、产出构造等成矿环境及成矿的可能性,以期为该区的矿产勘查工作提供参考资料。

图1

图1   新城沟地区断裂构造及多金属矿床分布(据张宇等[1])

1—新生代沉积盆地;2—上古生界地层;3—下古生界地层;4—前寒武纪岩石;5—中生代陆相火山岩和沉积岩;6—中生代花岗岩;7—缝合带和断裂构造;8—矿床点;9—研究区位置


1 地质背景

研究区大地构造位置位于天山—兴蒙造山带东段的兴凯地块(图2),该地块西以延吉断裂为界,与松嫩—张广才岭地块相邻,北以敦化—密山断裂为界,与佳木斯地块相邻,东以阿尔谢尼耶夫断裂为界,与锡霍特—阿林地体相邻。兴凯地块南部花岗岩的锆石U-Pb年龄为202~205 Ma[2],属于古亚洲洋和古太平洋构造体制的转换阶段,构造演化较为复杂。通过对比兴凯地块与华南板块所分布的石炭纪、二叠纪、三叠纪的古生物化石及生物地理特征[3,4,5,6],认为兴凯地块是外来地体,与华南板块有密切联系[7,8],属于大华南板块的东北部[9,10]。兴凯地块主要由少量前寒武纪变质杂岩、早古生代—新生代沉积盖层、大面积的中生代花岗岩以及中晚二叠世—晚三叠世火成岩所组成[11]

图2

图2   东北地区大地构造略图(据王枫等[11])

F1—索伦-西拉木伦-长春断裂;F2—延吉断裂;F3—嘉荫-牡丹江断裂;F4—黑河-贺根山断裂; F6—伊通-依兰断裂;F7—敦化-密山断裂;F8—阿尔谢尼耶夫断裂;1—断裂; 2—研究区位置


研究区内中、新生界地层区划属滨太平洋地层区,出露地层主要为上三叠统罗圈站组(T3l)、下白垩统穆棱组(K1m)、中—上新统船底山组(Nc)(图3),岩性分别以凝灰岩、砂岩、玄武岩为主。变形构造基本为断裂,以NE向断裂构造为主,广泛发育的中生代多类型的岩浆岩受断裂构造控制。区内岩浆活动主要集中在晚三叠—早侏罗世,主要为中细粒花岗闪长岩(T3Jlγδ)、中粗粒正长花岗岩(T3J1ξγ)。

图3

图3   东宁新城沟地区地质简图

1—上三叠统罗圈站组;2—晚三叠世-早侏罗世正长花岗岩;3—闪长玢岩;4—激电中梯异常范围及编号;5—土壤测量异常及编号;6—土壤测量剖面及编号;7—矿区边界;8—地质界线;9—取样点位置


2 岩相学特征

研究区内主要的花岗岩体为正长花岗岩,呈浅肉红色,半自形粒状结构,块状构造(图4)。岩石主要成分为钾长石(Kfs)、石英(Qtz)、斜长石(Pl),次要成分为黑云母(Bt),副矿物为磁铁矿,蚀变矿物主要为高岭石、蒙脱石等。钾长石呈它形、粒状,泥化显浅褐色,主要为条纹长石、微斜长石,粒径0.2~1 mm,含量约50%~55%。石英呈它形、粒状,粒径0.2~1 mm,含量约25%~30%。斜长石呈半自形、柱状,细密聚片双晶,An(钙长石百分比)为25,粒径0.2~1 mm,含量约15%~20%。黑云母呈自形、片状,褐色,片径0.2~1 mm,含量少。副矿物磁铁矿含量少。

图4

图4   东宁新城沟地区正长花岗岩手标本(a)及镜下照片(单偏光)(b)


3 岩石地球化学特征

于野外不同地点采集了4件具有代表性的正长花岗岩岩体,全岩常量、微量元素分析在华北有色地质勘查局燕郊中心实验室进行,常量元素分析采用分光光度法,所用仪器为上海光谱仪器有限公司的722S型可见光分光光度计和北京海光仪器厂的GGX-6型原子吸收分光光度计,分析精度优于5%;微量元素和稀土元素分析采用PE公司的电感耦合等离子质谱仪(ICP-MS)测定,分析精度优于10%。为了对比分析,引入敬海鑫等[2]在该区附近所做的部分资料。样品分析结果及特征参数统计结果见表1表2

表1   东宁新城沟地区花岗岩的常量元素、微量元素和稀土元素分析结果

样品号HQ-1HQ-2HQ-3HQ-5JX1304JX13051322
岩石名称正长花岗岩正长花岗岩正长花岗岩正长花岗岩二长花岗岩二长花岗岩二长花岗岩
SiO276.7874.5672.1271.2374.2075.1676.42
Al2O311.9812.6813.0713.5213.1512.8512.70
Fe2O31.181.371.270.990.300.250.20
FeO0.881.681.682.821.721.401.11
K2O4.673.503.403.234.174.234.80
MgO0.100.410.640.900.260.170.11
Na2O3.423.363.013.073.853.863.59
CaO0.521.451.262.201.120.940.71
TiO20.090.240.330.420.160.130.10
MnO0.020.040.030.080.040.040.02
P2O50.010.050.080.080.030.020.02
LOI0.280.492.931.310.580.340.39
Total99.9499.8399.8299.8599.7299.45100.16
Rb167.00145.00120.00132.0089.40114.00161.00
Ba120468465526780951712
Nb10.207.078.5610.4010.407.904.90
Ta1.650.911.181.260.400.300.20
K38751.0629042.5528212.7726802.1334602.1335100.0039829.79
Sr17.298.6120.00156.00194.50107.5059.40
Cr6.657.8514.2026.50
P61.13218.31349.30349.30130.9987.3287.32
Hf4.854.426.127.418.705.805.80
Th7.439.502.10
Zr375.00219.0091.00
Ti564144019802520960780600
La20.7019.0014.5034.8026.2049.0020.20
Ce40.0032.3028.2071.1057.6093.5038.20
Pr4.713.593.499.206.139.884.30
Nd14.2011.9012.3033.4024.1037.3016.50
Sm3.272.772.727.895.136.933.37
Eu0.170.470.491.171.290.710.47
Gd4.222.542.436.744.415.783.26
Tb0.870.440.421.100.700.930.57
Dy6.543.042.636.684.265.383.58
Ho1.460.630.571.310.871.130.78
Er4.651.971.793.762.663.032.32
Tm0.760.320.290.570.420.500.39
Yb5.422.292.183.772.733.092.61
Lu0.850.350.340.530.470.480.39
Y45.2020.3016.0037.7027.2032.7025.00

注:氧化物含量单位为%,稀土、微量元素含量单位为10-6。JX1304、JX1305、1322样品数据引自敬海鑫等[2],其余为本文数据。

新窗口打开| 下载CSV


表2   东宁新城沟地区花岗岩的常量元素、微量元素和稀土元素特征参数统计结果

样品号HQ-1HQ-2HQ-3HQ-5JX1304JX13051322
岩石名称正长花岗岩正长花岗岩正长花岗岩正长花岗岩二长花岗岩二长花岗岩二长花岗岩
w(K2O)+w(Na2O)8.096.866.416.308.028.098.39
w(K2O)/w(Na2O)1.371.041.131.051.081.101.34
δ1.941.491.411.412.062.042.11
Mg#8.4120.0628.7830.1821.0020.0015.00
A/CNK1.031.061.201.081.021.021.02
A/NK1.601.631.801.161.211.171.14
DI94.1586.9085.6379.6790.0391.8393.71
SI0.983.986.408.172.521.721.12
R12761288629442826256826222661
R2297427437553394365331
w(Nb)/w(Ta)6.187.777.258.2526.0026.3324.50
w(Rb)/w(Nb)16.3720.5114.0212.698.6014.4332.86
w(Rb)/w(Sr)9.711.471.000.850.461.062.71
w(Rb)/w(Ba)1.390.310.260.250.110.120.23
w(Sr)/w(Y)0.384.867.504.147.153.292.38
∑REE107.8281.6172.35182.02136.97217.6496.94
∑LREE83.0570.0361.70157.56120.45197.3283.04
∑HREE24.7711.5810.6524.4616.5220.3213.90
w(∑LREE)/w(∑HREE)3.356.055.796.447.299.715.97
δEu0.140.540.580.490.830.340.43
δCe0.990.960.970.971.111.041.00
LaN/YbN2.745.954.776.626.8811.375.55
LaN/SmN4.094.433.442.853.304.563.87
GdN/YbN0.640.920.921.481.341.551.03

注:铝饱和指数A/CNK=Al2O3/(CaO+Na2O+K2O)(摩尔分数比);A/NK=Al2O3/(Na2O+K2O)(摩尔分数比);镁质指数Mg#=100×MgO/(MgO+TFeO)(摩尔分数比);里特曼指数δ=(K2O+Na2O)2/(SiO2-43)(质量分数比);分异指数DI=Q+Or+Ab+Ne+Lc+Kp(CIPW计算数据);固结指数SI=100×MgO/(MgO+Fe2O3+FeO+Na2O+K2O)(质量分数比);R1=4Si-11(Na+K)-2(Fe+Ti),R2= 6Ca+2Mg+Al,各原子数据根据样品分析指标中指标含量及其分子式求取。

新窗口打开| 下载CSV


3.1 常量元素特征

常量元素分析结果显示,区内花岗岩的SiO2含量介于71.23%~76.78%之间,铝弱过饱和,Al2O3含量11.98%~13.52%,其中MgO(0.10%~0.90%)、TiO2、Fe2O3、P2O5含量偏低。区内花岗岩的里特曼指数δ介于1.41~2.11之间,平均值为1.78,主要为钙碱性岩系。在TAS图解中(图5),本区花岗岩主要位于碱性趋势线之下的亚碱性区域,正长花岗岩位于花岗岩区域,与岩相学特征中的岩矿鉴定结果较为相符。

图5

图5   东宁新城沟地区花岗岩的TAS图解(底图据Middlemost[12])

Ir—Irvine分界线,上方为碱性,下方为亚碱性;1—橄榄辉长岩;2a—碱性辉长岩;2b—亚碱性辉长岩;3—辉长闪长岩;4—闪长岩;5—花岗闪长岩;6—花岗岩;7—硅英岩;8—二长辉长岩;9—二长闪长岩;10—二长岩;11—石英二长岩;12—正长岩;13—副长石辉长岩;14—副长石二长闪长岩;15—副长石二长正长岩;16—副长正长岩;17—副长深成岩;18—霓方钠岩/磷霞岩/粗白榴岩


w(SiO2)—w(K2O)岩浆系列判别图上(图6a),花岗岩主要位于高钾钙碱性系列区域。花岗岩的K2O+Na2O含量为6.30%~8.39%,w(K2O)/w(Na2O)比值大于1,属于高碱相对富钾。花岗岩的铝饱和指数ACNK=1.02~1.20,平均值为1.06,在ACNK-ANK图解中投点位于弱过铝质区域(图6b),使用含铝指数ACNK=1.1作为I型和S型花岗岩的分界,ACNK<1.1,显示I型花岗岩的特征。花岗岩的分异指数DI=79.67~94.15,表明本区花岗岩岩浆分离结晶作用较强烈,酸性程度较高,有利于形成矿(化)。花岗岩的固结指数SI=0.98~8.17,反映岩浆分异程度较高。

图6

图6   东宁新城沟地区花岗岩SiO2-K2O图解(a)(实线据Peccerillo, et al.[13]; 虚线据Middlemost[14])和ACNK-ANK图解(b) (底图据Maniar, et al[15])


3.2 稀土元素特征

稀土元素分析结果显示(图7a),岩体稀土总量较低(∑REE=72.35×10-6~217.64×10-6),w(∑LREE)/w(∑HREE)一般为3.35~9.71,相对富集LREE,亏损HREE;LaN/YbN=2.74~11.37,平均值为6.27,轻、重稀土分异较强,显示演化趋势较为一致的右倾型稀土配分模式,反映轻稀土丰度相对较高的壳源物质参与了岩浆作用;轻稀土分异较强烈(LaN/SmN=2.85~4.56),重稀土分异相对较弱(GdN/YbN=0.64~1.55)。δCe为0.96~1.11,Ce异常不明显,可能是由于地壳物质的混染作用造成的。δEu为0.14~0.83,岩石具有较为明显的铕负异常,说明本区花岗岩岩浆的生成和演化背景较为一致,均来源于上地幔或下地壳的同一岩浆源,并且岩石在形成过程中源区有斜长石的残留,或在后期发生了斜长石的分离结晶。稀土元素配分曲线中(图7a),HQ-1样品的Eu负异常较其他样品更为明显,SiO2含量、分异指数DI也比其他样品高,表明研究区内的花岗岩岩浆存在分离结晶作用由弱变强,酸性程度由低到高的趋势,Eu弱负异常也逐渐变成强负异常,这可能与研究区内的岩浆侵入存在由早期向晚期阶段的演化过程有关[16]

图7

图7   东宁新城沟地区花岗岩稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b)(标准化数据据Sun,et al.[17])


3.3 微量元素特征

样品的微量元素原始地幔标准化蛛网图中(图7b),所分析的微量元素总体显示较为一致的右倾型分布形式,各岩石样品的微量元素总量差别不大。Nb、Ta、P、Ti等高场强元素相对亏损,P、Ti的亏损可能与岩浆演化过程中含磷、钛等副矿物的分离结晶或源区存在寄主矿物的残留有关[18],P呈现负异常,具有高分异I型花岗岩的特征[19],Nb、Ta的亏损反映岩浆来源于地壳或受到了地壳物质的强烈混染,也可能与源区流体的交代作用有关[20]。大离子亲石元素Rb、Ba、K等相对富集,强不相容元素Rb的相对富集表明岩浆的分异作用较为充分[21],花岗岩的形成过程经历了高度演化,具有中国东部华北地台二长花岗岩的特点[22]w(Nb)/w(Ta)=6.18~26.33,平均值为15.18,低于中国东部上地壳平均值16.2和原始地幔平均值18[17],表明研究区内花岗岩岩浆源区可能位于上地幔或下地壳,并在形成过程中混染了少量地壳物质[23,24]。在岩浆演化过程中,Nb与Ta丰度皆增,但Ta比Nb丰度增加更大,故岩浆演化从早期到晚期,w(Nb)/w(Ta)比值逐渐减小[25,26]。研究区内正长花岗岩的w(Nb)/w(Ta)值为6.18~8.25,而敬海鑫等分析的二长花岗岩的w(Nb)/w(Ta)值为24.5~26.33[2],说明该区正长花岗岩所处的演化阶段相对较晚。

微量元素蛛网图中(图7b),HQ-1样品的元素分布与其他样品存在差异,该样品的w(Rb)/w(Sr)比值为9.71>5,其他样品均小于5(表2)。Wang等[27]研究认为花岗岩的形成受白云母—黑云母的脱水熔融作用控制,w(Rb)/w(Sr)>5说明花岗岩的形成与白云母脱水熔融作用有关w(Rb)/w(Sr)<5说明与黑云母脱水熔融作用有关[28]。根据微量元素w(Rb)/w(Sr)—w(Rb)/w(Ba)来判别源区[29,30],HQ-1样品位于富黏土源区,其他样品位于贫黏土源区,说明研究区内花岗岩的源岩存在一定差异。

4 岩石成因与构造及成矿环境分析

根据Perace等[31]w(Rb)—[w(Y)+w(Nb)]、w(Rb)—[w(Yb)+w(Ta)]图解来判别研究区花岗岩的构造环境。将研究区内花岗岩的Nb、Y、Rb、Yb+Ta值投在w(Rb)—[w(Y)+w(Nb)]、w(Rb)—[w(Yb)+w(Ta)]图上,投点落在火山弧花岗岩(VAG)与同碰撞花岗岩(Syn-COLG)区域(图8),反映花岗岩形成于与俯冲和同碰撞有关的构造背景。

图8

图8   东宁新城沟地区花岗岩的w(Rb)—[w(Y)+w(Nb)]构造环境判别图(a)和w(Rb)—[w(Yb)+w(Ta)]构造环境判别图(b)(底图据Perace,et al.[31])

Syn-COLG—同碰撞花岗岩;WPG—板内花岗岩;VAG—火山弧花岗岩;ORG—洋中脊花岗岩


从花岗岩构造环境判别R1-R2图解(图9a)中可以看出,样品较为集中的落在同碰撞S型花岗岩区附近,表明区内花岗岩的形成可能与同碰撞的构造事件[32]有关。花岗岩成因系列w(K2O)—w(Na2O)图解中显示(图9b),花岗岩样品主要落在I和A型花岗岩区内,落在A型区的样品可能属于I型花岗岩的亚类[33]。岩体的w(Rb)/w(Nb)比值平均为17.07,明显高于全壳平均值(5.36),表明它们在形成过程中有部分壳源组分参与了熔融[34,35]w(Sr)/w(Y)比值为0.38~7.50,平均值为4.24,小于10,Mg#值为8.41~30.18,平均值为20.49,小于40,表明研究区内的花岗岩具有地壳重熔特征[36]w(Rb)/w(Ba)比值为0.11~1.39,高于原始地幔的相应值(w(Rb)/w(Ba)为0.088),说明岩浆的分异演化程度较高[37]

图9

图9   东宁新城沟地区花岗岩R1-R2图解(a)(底图据Batchelor,et al.[38])和w(K2O)—w(Na2O)图解(b)(底图据Collins,et al.[33])

①—地幔斜长花岗岩;②—破坏性活动板块边缘(板块碰撞前)花岗岩;③—板块碰撞后隆起期花岗岩;④—造山晚期花岗岩;⑤—非造山区A型花岗岩;⑥—同碰撞S型花岗岩;⑦—造山期后A型花岗岩


总体来看,本区花岗岩具有I型和同碰撞S型花岗岩的特征,其形成可能与火山岛弧的构造环境及同碰撞的构造事件[32]有关,岩浆成因类型为过渡型地壳同熔型,同熔型岩浆多出现在活动大陆边缘带[39]。花岗岩的成因可能是古亚洲洋在古生代末和中生代初彻底闭合后,西伯利亚板块与华北板块发生陆陆碰撞[40],碰撞挤压导致东北地区强烈的陆壳和岩石圈堆叠、增厚、缩短,形成同碰撞S型花岗岩。在挤压增生到达高潮之后,开始减压伸展,岩石圈根部拆沉,软流圈局部上涌,造山带伸展垮塌,发育断陷盆地,产生岩石圈不同层次的流变、熔融及大规模流体,并发育大量岩浆—流体成矿系统,导致浅成低温热液矿床及其他类型矿床的形成[1,40]。晚三叠世,古太平洋板块开始向西部的欧亚大陆东缘俯冲[2],形成符合活动大陆边缘构造环境演化特征的I型花岗岩以及与岩浆岛弧环境有关的浅成低温热液型矿床。研究区附近太平岭石英闪长岩中黑云母的Rb-Sr年龄为250 Ma[41],太平岭花岗岩体的黑云母K-Ar年龄为221.5 Ma[42],金厂金矿花岗斑岩的锆石加权平均年龄为203 Ma[43],且研究区附近侵入岩可划分为华力西晚期、印支早期和印支晚期3个侵入期,部分岩体也具有S型花岗岩的特征[42],说明该区的花岗岩具有多期次、多阶段、复合成因的特点。

5 物化探异常特征

在研究区内开展了1∶1万土壤测量,样品采集B层(淋积层)中的细粒级物质,截取-10~+60目之间的样品。通过土壤测量,在该区内圈定了AS-1化探异常(图3),异常呈不规则状,长轴方向为NW-SE向,面积约0.14 km2,受岩体接触带及附近北西向次级断裂构造控制。异常主要由Au、Ag、Cu、Mo、Bi、Sb、Sn组成,其中Au、Ag、Sb、Cu具有中低温成矿元素组合的特点,Au、Ag、Cu的异常值较高,且套合较好,均达到3级浓度分带,浓集中心明显且集中。异常位于晚三叠—早侏罗世正长花岗岩与上三叠统罗圈站组凝灰岩的接触带处,与岩体关系较为密切,多元素组合表明矿化可能受多阶段热液、北西向断裂构造控制。在异常区内布设了3条点距10 m的土壤测量剖面,对该化探异常进行了查证(图3)。

P5剖面中(图10),31~34号点处的Cu、Ag、Mo异常值较高,异常连续性较好,剖面中异常的高值区间与地表土壤测量圈定的Cu、Ag异常范围基本一致,且异常高值区位于正长花岗岩和凝灰岩的接触带处,异常最高值分别为67.2×10-6、0.12×10-6、11.1×10-6,该处伴生元素Sb、Bi的异常值也较高,最高值分别为0.86×10-6、0.23×10-6。49号点处的Au异常值较高,最高值为0.84×10-9。该剖面异常为化探异常范围的详细圈定提供了依据。

图10

图10   东宁新城沟地区P5地质化探综合剖面


P6剖面中(图11),37~40号之间出现较为明显的异常, 以Au、Ag、Cu为主,且异常高值区位于正长花岗岩和凝灰岩的接触带附近,异常最高值分别为1.22×10-9、0.13×10-6、35.2×10-6。异常南西侧伴生元素Mo、Sb、Sn的异常值也较高,最高值分别为38.3×10-6、0.70×10-6、3.82×10-6,异常高值区位于正长花岗岩和凝灰岩的接触带附近,异常范围沿剖面走向较宽,化探剖面基本确定了异常范围,为下一步工作提供了依据。

图11

图11   东宁新城沟地区P6地质化探综合剖面


P7剖面中(图12),Ag异常最高值处,Au、Cu的曲线值也随之增高,异常值较高,三者异常最高值分别为0.2×10-6、1.08×10-9、141×10-6。该处伴生元素Mo、Sb的异常值也较高,最高值分别为8.37×10-6、2.00×10-6,元素套合关系较好。异常高值区位于正长花岗岩和凝灰岩的接触带处,与地表土壤测量圈定的Au、Ag、Cu异常范围基本一致,且较为集中,为下一步槽探工程施工提供了依据。

图12

图12   东宁新城沟地区P7地质化探综合剖面


在研究区进行1∶1万激电中梯测量,在该区西北部圈定了一处范围较大的激电异常(图3图13)。激电异常呈NE-SW走向的条带状,长约 1 km,宽约300 m,由于受矿区边界限制,异常向西北未完全封闭。该异常面积为0.27 km2,视极化率变化范围为1.5%~2.4%,视电阻率变化范围在600~2 200 Ω·m之间,具有中低阻、中高极化的特征。视极化率具有南西陡北东缓的趋势,反映高极化体向北东倾,且异常位于岩体与围岩的接触带附近,推测该异常为矿致异常。

图13

图13   东宁新城沟地区激电中梯视极化率ηs等值线平面(a)和激电中梯视电阻率ρs等值线平面(b)


总体来看,研究区内激电异常具有中低电阻、中高极化的特征,化探异常为中低温多金属元素组合,其中Au、Ag、Cu的异常值较高,异常浓集中心重叠,多数元素异常具3级分带,浓集中心明显,异常位于正长花岗岩和凝灰岩的接触带附近,其地质、物化探特点显示,该区具有较好的找矿前景。

6 资源潜力综合分析

参考Feiss[44]在美国加勒比斑岩型铜矿带中所统计的含矿与不含矿岩体的w(Al2O3)/[w(CaO)+w(Na2O)+w(K2O)]比值与SiO2含量关系的判别规律,对研究区内的正长花岗岩体进行投点对比,其结果显示样品均位于含矿区域(图14),说明该区的岩体具有一定的含矿性,具备成矿的必要条件。

图14

图14   东宁新城沟地区花岗岩w(SiO2)—w(Al2O3)/[w(CaO)+w(Na2O)+w(K2O)]图解(据Feiss[44])


研究区位于中亚造山带东段的吉黑成矿带,是东西向古生代古亚洲洋成矿域与北北东向中新生代滨太平洋成矿域的叠合、转换部位[45],地质演化复杂,成矿条件优越。区内岩浆活动频繁,尤其以中生代的岩浆作用为主,为内生金属成矿作用提供了较为有利的地质环境。火山机构、断裂构造发育,为矿液运移、矿体赋存提供了通道和空间。

研究区附近已发现多处金、铜(金)矿床(图1,表3),矿床类型主要为浅成低温热液型—斑岩型,成矿时代集中在120~210 Ma,主要为燕山中晚期,该时期属于东北地区重要的Cu成矿期(110~200 Ma),也包括我国东部中生代浅成低温热液Au成矿的4个年龄区间之一(144~135 Ma)[34]。其中离研究区最近的金厂金矿中与成矿关系密切的闪长玢岩和花岗斑岩的锆石加权平均年龄为203 Ma,推测其成矿时限为190~210 Ma[43],为晚三叠—早侏罗世。

表3   研究区附近主要矿床特征统计

矿床
名称
围岩控矿构造/矿体形态大地构造矿床
类型
测定方法及
成矿年龄
金厂金矿花岗闪长岩、花
岗斑岩、花岗岩
角砾岩筒构造和环状、放射状断裂;柱状、囊状佳木斯地块老黑山—绥芬河盆地边缘断裂与东西向断裂带交汇部位斑岩型、爆破角砾岩型、浅成低温热液型锆石U-Pb年龄
190~210 Ma[43]
五凤金矿中侏罗世安山质
火山碎屑岩
NE、NW断裂;囊状、柱状中生代火山岩盆地边缘浅成低温热液型Rb-Sr等时线年龄
144±7 Ma[46]
五星山金矿中侏罗世粗安—粗
面质次火山岩
NW断裂;网脉、浸染状中生代火山岩盆地边缘浅成低温热液型Ar39-Ar40年龄
123±7Ma[47]
闹枝铜金矿中侏罗世火山岩NW断裂;不规则状中生代火山岩盆地内部晚古生代褶皱基底隆起区浅成低温热液型Ar39-Ar40年龄
127.8±0.2 Ma[48]
刺猬沟金矿中侏罗世安山质
角砾凝灰岩
破火山口及裂隙;脉状中生代火山岩盆地内边缘浅成低温热液型Ar39-Ar40年龄
176.8±1 Ma[48]
小西南岔铜金矿闪长岩及青龙村
变质岩
SN及EW向断裂控制;细脉浸染型、硫化物石英脉型中生代火山岩盆地边缘的断隆区斑岩—矽卡岩型锆石U-Pb年龄
123.35~102.1 Ma[49]
神洞叶蜡石矿次花岗闪长斑岩
次生石英岩
NE向断裂;透镜状新华夏构造体系金厂—老黑山多字型构造中部北东端次火山—热液交代型晚三叠纪[50]

新窗口打开| 下载CSV


7 结论

1) 黑龙江新城沟地区的花岗岩为高钾钙碱性岩系,具有弱过铝质I型火山弧花岗岩和S型同碰撞花岗岩的特点,岩浆源来自于上地幔或下地壳,并在形成过程中同化混染了壳层物质。

2) 研究区位于兴蒙造山带东缘的活动大陆边缘带,该区岩体的形成受西伯利亚板块与华北板块发生陆陆碰撞及古太平洋板块向欧亚大陆东缘俯冲双重作用的影响,其形成具有多期次、多阶段、复合成因的特点。

3) 通过对研究区内成矿地质条件、物化探异常、花岗岩的岩石地球化学特征及含矿性进行分析研究发现,激电异常为中低电阻、中高极化,化探异常浓集中心重叠且明显,异常位于正长花岗岩和凝灰岩的接触带附近,岩体有一定的含矿性,该区具备寻找浅成低温热液型Au、Ag、Cu矿的潜力。

参考文献

张宇, 赖勇, 卿敏 , .

黑龙江省金厂金矿床J0矿体流体地球化学研究

[J]. 岩石学报, 2008,24(5):1131-1144.

[本文引用: 2]

敬海鑫, 孙德有, 苟军 , .

兴凯地块南部花岗岩年代学、地球化学及Hf同位素特征

[J]. 地球科学:中国地质大学学报, 2015,40(6):982-994.

[本文引用: 5]

邵济安, 唐克东, 詹立培 , .

一个古大陆边缘的再造及其大地构造意义——延边地质研究新进展

[J]. 中国科学:B辑, 1995,25(5):548-555.

URL     [本文引用: 1]

中国科学院机构知识库(CAS IR GRID)以发展机构知识能力和知识管理能力为目标,快速实现对本机构知识资产的收集、长期保存、合理传播利用,积极建设对知识内容进行捕获、转化、传播、利用和审计的能力,逐步建设包括知识内容分析、关系分析和能力审计在内的知识服务能力,开展综合知识管理。

任纪舜, 王作勋, 陈炳蔚 , .

从全球看中国大地构造:中国及临区大地构造图简要说明

[M]. 北京:北京地质版社, 1999: 4-32.

[本文引用: 1]

Kobayashi F .

Middle Permian biogeography based on fusulinacean faunas

[G] //Ross C A, Ross J R P, Brenckle P L.Late paleozoic foraminifera: Their biogeography, evolution, and paleoecology, and the mid-carboniferous boundary.Cushman Foundation for Foraminiferal Research, Special Publication 36, 1997: 73-76.

[本文引用: 1]

Kobayashi F .

Palaeogeographic constraints on the tectonic evolution of the Maizuru Terrane of Southwest Japan to the eastern continental margin of South China during the Permian and Triassic

[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2003,195:299-317.

DOI:10.1016/S0031-0182(03)00363-8      URL     [本文引用: 1]

The Maizuru Terrane in the Inner Zone of Southwest Japan consists of weakly metamorphosed ophiolitic complexes and Permian and Triassic strata. The Permian Maizuru Group is 1500–3000 m thick and consists mainly of mudstone, sandstone, and alternating beds of sandstone and mudstone. It is subdivided into lower, middle, and upper formations, and is overlain with angular unconformity by the Lower–Middle Triassic Yakuno Group. The Maizuru Group is characterised by the occurrence of the Capitanian Lepidolina kumaensis fauna in conglomerates of the middle and upper formations, and the Wuchiapingian Codonofusiella– Colaniella and Changhsingian Palaeofusulina– Colaniella faunas in lenticular limestones and conglomerates of the upper formation. Pre-Capitanian foraminifera are contained in limestone clasts of conglomerates of the upper formation and the basal part of the Yakuno Group. Examination on the stratigraphy, lithology, foraminiferal fauna, and Late Palaeozoic to Mesozoic tectonics in and around the Maizuru Terrane leads to the following conclusions. Capitanian and Lopingian limestone blocks and clasts were originally deposited on the continental shelf, and were subsequently redeposited on the deeper continental slope. Almost all of the pre-Capitanian limestone clasts were derived from the Akiyoshi Seamount accreted by the early Late Permian, except for those containing Verella prolixa and Pseudostaffella praegorski which were reworked from the shallow continental shelf. The Maizuru Terrane originated on the active continental margin located close to South China during Permian–Triassic time, but the depositional environment of the Permian and Triassic strata rapidly changed from deeper continental slope to shallow continental shelf.

Zhang K J .

North and South China collision along the eastern and southern North China margins

[J]. Tectonophysics, 1997,270(1-2):145-156.

DOI:10.1016/S0040-1951(96)00208-9      URL     [本文引用: 1]

Lithofacies distribution and petrography and intracontinental deformation in the North China block (NCB) and the South China block (SCB) show an active continental margin flanked by the eastern NCB, and a passive continental margin was present along the west side of the SCB, both margins initially trending N-NE. The Tanlu fault possibly initiated as part of the subduction zone during Paleozoic time along the eastern margin on the NCB. The NCB and the SCB were divided along the eastern–southern North China margin by the Qinling–Dabie–Tanlu–Sulu–Imjingang–Yanji zone from southwest to northeast. These two continental blocks made contact first in the northeast during late Early Permian time, finally in the southeast at Late Triassic time, and the clockwise collision probably lasted to Middle Jurassic time. The eastern suture, the Yanji–Imjingang–Sulu–Tanlu zone, was dominated by contractional deformation. The southern suture, the Qinling–Dabie zone, was a transpression belt dominated by right-lateral strike-slip.

Zhang K J .

Granulite xenoliths from Cenozoic basalts in SE China provide geochemical fingerprints to distinguish lower crust terranes from the North and South China tectonic blocks: comment

[J]. Lithos, 2004,73(1):127-134.

DOI:10.1016/j.lithos.2003.10.005      URL     [本文引用: 1]

A careful examination of the geochemical data set for SE China granulite xenoliths in Cenozoic basalts shows differences between the magmatic and cumulate granulite xenoliths, but no distinction between the Nushan and the other South China magmatic granulite xenoliths. Nushan granulite xenoliths with Archean Nd model ages were most likely derived from the Archean basement of the Yangtze craton itself and overprinted by a Paleoproterozoic to Mesoproterozoic tectonothermal event that occurred in the South China block, including the northern margin of the Yangtze craton. The granulate xenoliths therefore cannot be used to distinguish the North China and South China lower crust. Further, the discovery of the UHP eclogite xenoliths west of the Tanlu fault zone, along with recent paleomagnetic, seismic profiling, and other geochemical studies, favors a deep-seated, Tibetan-type, continental subduction of the Yangtze craton beneath North China along the Tanlu belt.

Li S Z, Jahn B M, Zhao S J , et al.

Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data

[J]. Earth-Science Reviews, 2017,166:270-285.

DOI:10.1016/j.earscirev.2017.01.009      URL     [本文引用: 1]

Lithospheric subduction prior to the assembly of the South China and North China blocks is traditionally considered to be directed northward. However, some critical geological and geochemical data cannot be reconciled with this northward subduction. This paper presents new lines of evidence against the traditional models and proposes a new and revolutionary tectonic model to explain the distribution and exhumation of high pressure (HP)-ultrahigh pressure (UHP) metamorphic rocks of the Dabie-Sulu Belt. We emphasize the following: 1) The Triassic tectonic environment of the southern margin of the North China Block was passive, not active, based on the stratigraphy; 2) In the southern margin of the North China Block no arc magmatism was recorded. 3) Many Paleoproterozoic slices of Jiaobei affinity of the Jiao-Liao-Ji Belt in the North China Block were located in the Triassic Sulu Orogen. 4) Many 1.85Ga metamorphic zircons are preserved in the Dabie-Sulu high pressure-ultra-high pressure (HP-UHP) metamorphic rocks. 5) The geometric asymmetry of many structural patterns in the HP-UHP slices indicates top-to-the northwest thrusting during the exhumation of HP-UHP slices. 6) Blueschists occur in the south of the UHP eclogite slices. 7) In the eastern segment of the North Qinling Orogen, no components with an affinity of the South China Block have been found. Along the Shangdan Suture of the Qinling Orogen has been recorded an apparent northward subduction. We consider that the suture is just a lateral subduction zone rather than a major collisional zone. Along the Shangdan Suture, the rarity of I-type plutonism can be attributed to a transform-type continental margin. The Bureya-Jiamusi-Khanka Block has an affinity to the South China Block based on its similarity regarding the Paleozoic history of deformation and Triassic blueschist metamorphic facies metamorphism. The Bureya-Jiamusi-Khanka Block could be the northern extension of the Dabie-Sulu Belt, and this gigantic belt could be interpreted as an orocline related to the southeastward subduction of the North China Block beneath the Greater South China Block.

郭润华, 李三忠, 索艳慧 , .

华北地块楔入大华南地块和印支期弯山构造

[J]. 地学前缘, 2017,24(4):171-184.

DOI:10.13745/j.esf.yx.2017-3-2      URL     [本文引用: 1]

东亚大陆内存在华北、扬子、华夏、韩国京畿和岭南、日本飞弹、布列亚—佳木斯—兴凯等诸多地块/微地块,多数地块之间从太古宙到中生代都存在复杂的洋-陆格局和聚散过程。研究东亚大陆各个地块/微地块的属性和关系及其拼合过程对东亚大陆演化规律及古大陆重建具有重要意义,但对其认识迄今仍存在争议。因此,本文综合岩石学、地层学、古生物等方面的资料证据,对东亚各个地块之间的地层、古生物特征进行对比,进而探讨东亚大陆各地块/微地块的亲缘性,以期厘定各地块间的拼合时序与方式。结果表明,除华北地块外,华南、韩国、西南日本、布列亚—佳木斯—兴凯等地块/微地块都具有亲冈瓦纳的特征,它们早古生代可能为统一的板块,本文称为大华南地块。印支期随着华北地块向SE朝大华南地块揳入,造成大华南地块西侧构造旋转和弯曲,形成类似印度板块揳入欧亚板块所导致的喜马拉雅山型弯山构造。

王枫, 许文良, 葛文春 , .

敦化—密山断裂带的平移距离: 来自松嫩—张广才岭—佳木斯—兴凯地块古生代—中生代岩浆作用的制约

[J]. 岩石学报, 2016,32(4):1129-1140.

URL     Magsci     [本文引用: 2]

敦化-密山断裂带是郯庐断裂北段的重要分支之一,其大规模左行走滑发生的时限以及平移距离一直存在较大争议。本文系统地总结了松嫩-张广才岭地块东缘、佳木斯地块以及兴凯地块之上古生代-中生代火成岩的锆石U-Pb年代学资料,结合其空间分布特征,对敦化-密山断裂带的平移时限及距离提供了制约。研究表明,松嫩-张广才岭地块东缘与兴凯地块在古生代-中生代期间具有类似的岩浆活动历史,两个地块之上该时期的岩浆作用可以划分为8个主要期次:中-晚寒武世(ca.500~516Ma)、早奥陶世(ca.480~486Ma)、晚奥陶世(ca.450~456Ma)、中志留世(ca.426~430Ma)、早二叠世(ca.285~292Ma)、晚二叠世(ca.255~260Ma)、晚三叠世(ca.202~210Ma)和早侏罗世(ca.185~186Ma)。相比之下,佳木斯地块中的古生代-中生代早期岩浆事件则集中在晚寒武世(~492Ma)、晚泥盆世(~388Ma)、早二叠世(~288Ma)、晚二叠世(~259Ma)和早侏罗世(~176Ma),而晚奥陶世-志留纪和晚三叠世的岩浆活动在佳木斯地块未见报道。早白垩世晚期(ca.105~110Ma)和晚白垩世(ca.90~94Ma)的岩浆活动在三个地块均存在。上述结果表明兴凯地块东缘与松嫩-张广才岭地块东缘在早古生代经历了共同的地质演化历史,而中生代早期,兴凯地块西缘与松嫩-张广才岭地块东缘经历了同样的岩浆作用历史。上述结果暗示,敦化-密山断裂可能经历了至少两次平移,分别发生在中-晚二叠世-早三叠世和中-晚侏罗世-早白垩世,推测其总的平移距离约400km。结合研究区中生代期间的构造演化历史,敦化-密山断裂中生代的左行平移应与中-晚侏罗世-早白垩世期间古太平洋板块(Izanagi板块)的斜向俯冲相联系。

Middlemost Eric A K .

Naming materials in the magma/igneous rock system

[J]. Earth-Science Reviews, 1994,37:215-224.

DOI:10.1016/0012-8252(94)90029-9      URL     [本文引用: 1]

The main aim of igneous petrology is to develop a complete specification of the magma/igneous rock system. This paper is a sequel to an earlier essay ( Middlemost, 1991) on the classification of igneous rocks and magmas. It explores the ways and means of developing a single, consistent method of naming all igneous materials. All modal classifications are fettered by problems arising from heteromorphism, extremes in grain size, and the presence of glass. Only chemical parameters can provide a reliable and straightforward method of classifying all the common igneous rocks and their magmas. This is undoubtedly true of glassy rocks and magmas. The potential of the TAS diagram in this new and enlarged role is evaluated, resulting in a modification of some boundaries recommended for the volcanic rocks. A new comprehensive chemical classification of the plutonic rocks is introduced. To keep it and the volcanic classification in tandem, several new terms are proposed. They include gabbroic diorite as a plutonic equivalent of basaltic andesite and peridotgabbro as a plutonic equivalent of picrobasalt. Peridotite is defined as the plutonic equivalent of picrite and by taking the idea of equivalence a step further, it is defined as a peridotgabbroic or gabbroic rock that contains more than 18% MgO and less than 2% total alkalis. The picrobasaltic and basaltic rocks that contained more than 18% MgO and more than 2% (Na O + K O) are called alkalic picrites. Their plutonic equivalents are named alkalic peridotites. A benefit of this new chemical classification of plutonic rocks is that it enables one to avoid the awkward term ultramafic. A single classification that links magmas, plutonic and volcanic rocks should be appreciated by all geochemists and petrologists who amass, and manipulate, large geochemical databases but are unwilling, or unable, to carry out quantitative modal analyses. This classification also enables geoscientists to focus on magma the most important concept in igneous petrology.

Peccerillo R, Taylor S R .

Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib

[J]. Mineral Petrol, 1976,58:63-81.

DOI:10.1007/BF00384745      URL     [本文引用: 1]

Analytical data for Sr, Rb, Cs, Ba, Pb, rare earth elements, Y, Th, U, Zr, Hf, Sn, Nb, Mo, Ni, Co, V, Cr, Sc, Cu and major elements are reported for eocene volcanic rocks cropping out in the Kastamonu area, Pontic chain of Northern Turkey. SiO 2 % versus K 2 O% relationship shows that the analyzed samples belong to two major groups: the basaltic andesitic and the andesitic ones. High-K basaltic andesites and low-K andesites occur too. Although emplaced on continental type basement (the North Anatolian Crystalline Swell), the Pontic eocene volcanics show elemental abundances closely comparable with typical island arc calc-alkaline suites, e.g. low SiO 2 % range, low to moderate K 2 O% and large cations (Cs, Rb, Sr, Ba, Pb) contents and REE patterns with fractionated light and almost flat heavy REE patterns. REE and highly charged cations (Th, U, Hf, Sn, Zr) are slightly higher than typical calc-alkaline values. Ferromagnesian elements show variable values. Within the basaltic andesite group the increase of K%, large cations, REE, La/Yb ratio and high valency cations and the decrease of ferromagnesian element abundances with increasing SiO 2 % content indicate that the rock types making up this group developed by crystalliquid fractionation of olivine and clinopyroxene from a basic parent magma. Trace element concentration suggest that the andesite group was not derived by crystal-liquid fractionation processes from the basaltic andesites, but could represent a distinct group of rocks derived from a different parent magma.

Middlemost Eric A K .

Magmas and magmatic rocks: an introduction to igneous petrology

[M]. London: Longman, 1985, 1-266.

[本文引用: 1]

Maniar P D, Piccoli P M, .

Tectonic discrimination of granitoids

[J]. Geological Society of America Bulletin, 1989,101(5):635-643.

DOI:10.1130/0016-7606(1989)101&lt;0635:TDOG&gt;2.3.CO;2      URL     [本文引用: 1]

汪建明, 丁桂春 .

苏州A-型花岗岩中长石的负Eu异常及其成因意义

[J]. 地质实验室, 1995(2):108-111.

URL     [本文引用: 1]

苏州A-型花岗岩岩体有三个侵入阶段,随着岩浆由早阶段向晚阶段演化,斜长石和钾长石中的Eu含量逐渐降低,由强正Eu异常逐渐转变成强负Eu异常,并且与全岩的Eu亏损呈正消长关系,研究表明,晚期岩体中斜长石和钾长石的负Eu异常主要由于它们是晚期结晶分异的产物,且结晶时的氧逸度较低。

Sun S S, McDonough W F .

Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes

[J]. Geological Society London Special Publications, 1989,42:313-345.

DOI:10.1144/GSL.SP.1989.042.01.19      URL     [本文引用: 2]

周振华, 吕林素, 杨永军 , .

内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因:锆石U-Pb年代学和岩石地球化学制约

[J]. 岩石学报, 2010,26(12):3521-3537.

URL     Magsci     [本文引用: 1]

内蒙古黄岗锡铁矿是大兴安岭南段成矿带中的一个重要矿床。LA-ICP-MS锆石U-Pb测年结果表明,黄岗岩体中的钾长花岗岩和花岗斑岩分别形成于136.7±1.1Ma和136.8±0.57Ma,属早白垩世的产物。黄岗花岗岩体SiO<sub>2</sub>含量较高(66.81%~77.39%),Al<sub>2</sub>O<sub>3</sub>含量低(11.33%~14.54%),显著贫镁,ALK较高(5.65%~10.67%),K<sub>2</sub>O/Na<sub>2</sub>O值在0.32~10.53,平均为2.78。稀土配分曲线呈右倾轻稀土富集型,铕强烈亏损,<em>δ</em>Eu值为0.03~0.20。富集高场强元素Zr、Hf和大离子亲石元素Rb、U、Th,而元素P、Ti、Ba、Sr明显亏损,具有与洋岛玄武岩相似的Y/Nb等元素比值(>1.2)。上述特征与典型的A1型板内非造山花岗岩一致,其成因可能为在岩石圈伸展环境下,幔源岩浆的底侵促使上覆的先存地壳发生部分熔融形成花岗质岩浆,岩浆源区与壳幔混熔作用有关。

Wu F Y, Jahn B M, Wilde S A , et al.

Highly fractionated I-type granites in NE China(I): geochronology and petrogenesis

[J]. Lithos, 2003,66:241-273.

DOI:10.1016/S0024-4937(02)00222-0      URL     [本文引用: 1]

Geochemical data suggest that the rocks are highly fractionated I-type granites. Fractionation of biotite and feldspars was the principal process of magmatic differentiation and responsible for major element variation. Rb, Sr and Ba concentrations were controlled by feldspar separation, whereas REE elements were fractionated by accessory minerals, such as apatite, allanite and monazite.

武鹏飞, 孙德有, 王天豪 , .

延边和龙地区闪长岩的年代学、地球化学特征及岩石成因研究

[J]. 高校地质学报, 2013(4):600-610.

DOI:10.3969/j.issn.1006-7493.2013.04.006      URL     [本文引用: 1]

吉林省东部延边和龙地区中生代闪长岩的锆石LA-ICP-MSU-Pb年龄为173~175Ma。岩石的SiO2含量为53.28%~58.02%,TiO2含为0.99%~1.08%,MgO和TFe2O3含量分别为1.96%~6.45%和6.59%~9.64%,Mg#值为37~59,Na2O含量为3.37%~4.88%,K2O含量为0.94%~2.30%,Na2O/K2O为1.70~4.16,Al2O3含量为15.87%~18.93%,相对富钠高铝,并且具有钠质钙碱性系列向高钾钙碱性系列过渡的趋势,稀土元素球粒陨石标准化曲线显示其具有富含轻稀土元素(LREE)、贫重稀土元素(HREE)以及无Eu负异常的特点。岩石富集大离子亲石元素(Rb,Th,Ba),明显亏损Nb,Ta,Zr,Hf和Ti等高场强元素(HFSE)。闪长岩的原始岩浆起源于受俯冲流体交代地幔楔的部分熔融,岩浆在上升过程中未受到明显的地壳混染。该期闪长岩形成于与古太平洋板块俯冲相关联的活动大陆边缘环境。

程彦博, 毛景文, 谢桂青 , .

云南个旧老厂—卡房花岗岩体成因:锆石U-Pb年代学和岩石地球化学约束

[J]. 地质学报, 2008,82(11):1478-1493.

DOI:10.3321/j.issn:0001-5717.2008.11.003      URL     Magsci     [本文引用: 1]

在云南个旧地区发育大量与成矿时空密切相关的侵入岩。个旧东区的老厂-卡房花岗质岩体为一隐伏的花岗岩体,侵入于三叠纪个旧组灰岩和碳酸盐地层中,岩性主要为中细粒黑云母花岗岩,是个旧地区与成矿关系最为密切的花岗岩体之一。岩石的ACNK值大多在1.0以上,属于高钾钙碱性系列岩石;U、Th含量较高,应归属于HHP花岗岩;岩石类型属于S型花岗岩,但经历了高度的分异和演化;n(Rb)/n(Sn)- n(Rb)/n(Ba)与n(CaO)/n(Na2O)-n(Al2O3)/n(TiO2)图解均暗示岩石的源区性质为由粘土岩所派生的岩浆。锆石LA-ICP-MS定年结果表明,老厂-卡房岩体形成于85±0.85Ma,相当于晚白垩世。根据区域地质和花岗岩的地球化学特征,暗示个旧地区燕山晚期处于伸展构造背景。

迟清华, 鄢明才 .

应用地球化学元素丰度数据手册

[M]. 北京: 地质出版社, 2007, 1-148.

[本文引用: 1]

赵一鸣, 张德全, 盛继福 .

大兴安岭及其邻区铜多金属矿床成矿规律与远景评价

[M]. 北京: 地震出版社, 1997, 192-238.

[本文引用: 1]

王京彬, 王玉堡, 王莉娟 .

大兴安岭中南段铜矿成矿背景及找矿潜力

[J]. 地质与勘探, 2000,36(5):1-4.

DOI:10.3969/j.issn.0495-5331.2000.05.001      URL     [本文引用: 1]

大兴安岭中南段主要铜矿类型为斑岩-热液脉型,其成矿与燕山早期浅定位中酸性侵入体有成因联系.成矿时代集中于180Ma~160Ma,与中生代早期岩石圈伸展背景下幔源岩浆底侵-同熔-分异作用有关,由于其形成于区域大规模火山喷发之前,深部岩浆来不及进行彻底分异,对铜的大规模成矿不利.因此,寻找大型以上规模的铜矿床必须综合考虑岩浆条件和矿源层两个主要因素.本区大规模岩浆作用晚期(燕山晚期)形成的紫金山式铜矿应是寻找大型铜矿的重要目标.

李昌年 .

火成岩微量元素岩石学

[M]. 武汉: 中国地质大学出版社, 1992, 94-123.

[本文引用: 1]

赵振华 .

微量元素地球化学原理

[M]. 北京: 科学出版社, 1997, 56-112.

[本文引用: 1]

Wang Y J, Zhang Y, Fan W M , et al.

Numerical modeling of the formation of Indo-Sinian peraluminous granitoids in Hunan Province: Basaltic underplating versus tectonic thickening

[J]. Science in China:Series D, 2002,45(11):1042-1056.

DOI:10.1007/BF02911241      URL     PMID:23189623      [本文引用: 1]

The genesis of Indo-Sinian granitic plutons with peraluminous and potassium-rich affinities from Hunan Province, China has been investigated by numerical modeling using the numerical code FLAC. On the basis of the regional geological evolution in South China, we employed a realistic numerical model in an attempt to unravel the influences of basaltic underplating and tectonic crustal thickening on the crustal anatexis. Heat production derived from basaltic underplating (e.g. ca. 220 Ma gabbro xenoliths) can result in dehydration melting of fluid-bearing minerals in crustal rocks such as gneisses and metapelites, but its effect is limited in a relatively short time span (5-15 Ma) and on a small scale. Accordingly, it is very difficult for basaltic underplating to generate the large-scale Indo-Sinian granitic bathliths unless voluminous mafic magmas had been underplated at the lower/middle crust during this period. Alternatively, crustal thickening induced by tectonic compression can also lead to geothermal elevation, during which the temperature at the boundary between lower and middle crusts can be up to or greater than 700 C, triggering dehydration melting of muscovite in gneiss and metapelite. The proportion of melts from muscovite-induced dehydration melting is close to critical melt percentage ( 20%) once the thickening factor reaches 1.3. These melts can be effectively transferred to the crust-level magma chamber and form large-scale granitic batholiths. In combination with the Indo-Sinian convergent tectonic setting in South China as well as sparse outcrops of contemporary mafic igneous rocks, we consider that tectonic crustal thickening is likely to be the predominant factor controlling the formation of the Indo-Sinian peraluminous and potassium-rich granitoids in Hunan Province.

Inger S, Harris N .

Geochemical constraints on leucogranite magmatism in the Langtang Valley,Nepal Himalaya

[J]. Journal of Petrology, 1993,34:345-368.

DOI:10.1093/petrology/34.2.345      URL     [本文引用: 1]

Abstract A complex of crustally derived leucogranitic sills emplaced into sillimanite-grade psammites in the upper Langtang Valley of northern Nepal forms part of the Miocene High Himalayan granite association. A series of post-tectonic, subvertical leucogranitic dykes intrude the underlying migmatites, providing possible feeders to the main granite sills. The leucogranite is peraluminous and alkali-rich, and can be subdivided into a muscovite–biotite and a tourmaline–muscovite facies. Phase relations suggest that the tourmaline leucogranites crystallized from a water-undersaturated magma of minimum-melt composition at pressures around 3–4 kbar. Potential metasedimentary protoliths include a substantial anatectic migmatite complex and a lower-grade mica schist sequence. Isotopic constraints preclude the migmatites as a source of the granitic melts, whereas trace-element modelling of LILEs (Rb, Sr, and Ba), together with the Nd and Sr isotopic signatures of potential protoliths, strongly suggest that the tourmaline-bearing leucogranites have been generated by fluid-absent partial melting of the muscovite-rich schists. However, REE and HFSE distributions cannot be reconciled with equilibrium melting from such a source. Systematic covariations between Rb, Sr, and Ba can be explained by variations in protolith mineralogy and P – T –a H 2 O . Tourmaline leucogranites with high Rb/Sr ratios represent low-fraction-melts (F{small tilde} 12%) efficiently extracted from their protoliths under conditions of low water activity, whereas the heterogeneous two-mica granites may result from melting under somewhat higher a H 2 O conditions. The segregation of low-degree melts from source was probably by deformation-enhanced intergranular flow and magma fracturing, with the mechanisms of migration and emplacement controlled by variations in the uppercrustal stress regime during late–orogenic extensional collapse of the thickened crust.

Sylvester P J .

Post-collisional strongly peraluminous granites

[J]. Lithos, 1998,45:29-44.

DOI:10.1016/S0024-4937(98)00024-3      URL     [本文引用: 1]

Strongly peraluminous (SP) granites have formed as a result of post-collisional processes in various orogens. In `high-pressure' collisions such as the European Alps and Himalayas, post-collisional exhumation of overthickened crust (>50 km), heated by radiogenic decay of K, U and Th during syn-collisional thickening, produced small- to moderate-volume, cool (<875°C) SP granite melts with high Al O /TiO ratios. In `high-temperature' collisions such as the Hercynides and Lachlan Fold Belt (LFB), there was less syn-collisional crustal thickening (≤50 km). Crustal anatexis was related to post-collisional lithospheric delamination and upwelling of hot asthenosphere, forming large-volume, hot (≥875°C) SP granite melts with low Al O /TiO ratios. Both clay-rich, plagioclase-poor (<5%) pelitic rocks and clay-poor, plagioclase-rich (>25%) psammitic rocks have been partially melted in high-pressure and high-temperature collisional orogens, with the pelite-derived SP granites tending to have lower CaO/Na O ratios (<0.3) than their psammite-derived counterparts. The predominance of pelite-derived SP granites in the Himalayas and psammite-derived SP granites in the LFB suggests that mature continental platforms made up more of the accreted crust in the Himalayan collision than in the LFB.

谢晓华, 陈卫锋, 赵葵东 , .

桂东北豆乍山花岗岩年代学与地球化学特征

[J]. 岩石学报, 2008,24(6):160-170.

URL     [本文引用: 1]

豆乍山花岗岩主要由中细粒二云 母二长花岗岩构成,是桂东北苗儿山复式花岗岩体中段的一个重要产铀的岩体。单颗粒锆石 SHRIMP U-Pb 年龄为228±11Ma,属于印支期岩浆活动产物。地球化学特征显示该花岗岩以过铝、富硅、富碱和低 CaO/Na_2O 比值为特征,微量元素主要富集 Rb、Th、U 和 Ta,亏损 Sr、Ba 和 Ti。稀土总量30.24×10~(-6)~139.18×10~(-6),轻稀土轻微富集(LREE/HREE=4.00~6.35,(La /Yb)_N=3.24~6.74),Eu 亏损明显(δEu=0.14~0.19)。结合其它相关地质资料,表明豆乍山花岗岩是壳源型花岗岩,是在印支运动晚期地壳伸展—减薄的构造背景下,成分为 泥质的变质岩通过低程度部分熔融方式而形成。

Pearce J A, Harris N B W, Tindle A G .

Trace element discrimination diagrams for the tectonic interpretation of granitic rocks

[J]. Journal of Petrology, 1984,25(4):956-983.

DOI:10.1093/petrology/25.4.956      URL     [本文引用: 2]

Granites may be subdivided according to their intrusive settings into four main groups—ocean ridge granites (ORG), volcanic arc granites (VAG), within plate granites (WPG) and collision granites (COLG)—and the granites within each group may be further subdivided according to their precise settings and petrological characteristics. Using a data bank containing over 600 high quality trace element analyses of granites from known settings, it can be demonstrated using ORG-normalized geochemical patterns and element-SiO2 plots that most of these granite groups exhibit distinctive trace element characteristics. Discrimination of ORG, VAG, WPG and syn-COLG is most effective in Rb–Y–Nb and Rb–Yb–Ta space, particularly on projections of Y–Nb, Yb–Ta, Rb–(Y + Nb) and Rb–(Yb + Ta). Discrimination boundaries, though drawn empirically, can be shown by geochemical modelling to have a theoretical basis in the different petrogenetic histories of the various granite groups. Post-collision granites present the main problem of tectonic classification, since their characteristics depend on the thickness and composition of the lithosphere involved in the collision event and on the precise timing and location of magmatism. Provided they are coupled with a consideration of geological constraints, however, studies of trace element compositions in granites can clearly help in the elucidation of post-Archaean tectonic settings.

张旗 .

碰撞与花岗岩——碰撞是构造事件,不是构造环境

[J]. 岩石矿物学杂志, 2012,31(5):745-749.

[本文引用: 2]

Collins W J, Beams S D, White A J R , et al.

Nature and origin of A-type granites with particular reference to southeastern Australia

[J]. Contributions to Mineralogy and Petrology, 1982,80(2):189-200.

DOI:10.1007/BF00374895      URL     [本文引用: 2]

In the Lachlan Fold Belt of southeastern Australia, Upper Devonian A-type granite suites were emplaced after the Lower Devonian I-type granites of the Bega Batholith. Individual plutons of two A-type suites are homogeneous and the granites are characterized by late interstitial annite. Chemically they are distinguished from I-type granites with similar SiO 2 contents of the Bega Batholith, by higher abundances of large highly charged cations such as Nb, Ga, Y, and the REE and lower Al, Mg and Ca: high Ga/Al is diagnostic. These A-type suites are metaluminous, but peralkaline and peraluminous A-type granites also occur in Australia and elsewhere.Partial melting of felsic granulite is the preferred genetic model. This source rock is the residue remaining in the lower crust after production of a previous granite. High temperature, vapour-absent melting of the granulitic source generates a low viscosity, relatively anhydrous melt containing F and possibly Cl. The framework structure of this melt is considerably distorted by the presence of these dissolved halides allowing the large highly charged cations to form stable high co-ordination structures. The high concentration of Zr and probably other elements such as the REE in peralkaline or near peralkaline A-type melts is a result of the counter ion effect where excess alkali cations stabilize structures in the melt such as alkali-zircono-silicates. The melt structure determines the trace element composition of the granite.Separation of a fluid phase from an A-type magma results in destabilization of co-ordination complexes and in the formation of rare-metal deposits commonly associated with fluorite. At this stage the role of Cl in metal transport is considered more important than F.

鲁艳明, 所承逊, 专少鹏 , .

内蒙古阿鲁科尔沁地区早白垩世侵入岩地球化学特征及其成矿潜力

[J]. 物探与化探, 2016,40(5):885-982.

DOI:10.11720/wtyht.2016.5.07      URL     Magsci     [本文引用: 2]

<p>阿鲁科尔沁地区早白垩世侵入岩主要由中细粒花岗闪长岩、中细粒二长花岗岩、花岗斑岩组成,岩体总体具有富硅、富钠而相对贫钾的特征,属准铝质&mdash;弱过铝质的钙碱性系列。岩体中稀土元素总量较低,轻重稀土发生分馏,具有明显的Eu负异常,亏损高场强元素Nb、Ta、P、Ti,相对富Th、U、Zr、La和轻稀土元素,相对贫Sr,属I型花岗岩。岩体主体来源于壳源组分的部分熔融,形成于早白垩世的后碰撞伸展环境,为有利成矿构造演化阶段。岩体中,<em>w</em>(K)/<em>w</em>(Rb)比值、<em>w</em>(Rb)/<em>w</em>(Sr)比值、<em>w</em>(Fe<sub>2</sub>O<sub>3</sub>)/<em>w</em>(FeO)比值、分异指数DI较大,固结指数SI较小,属演化程度低、分异程度较高的氧化型磁铁矿系列花岗岩,其地球化学含矿性参数显示Mo、Cu、Pb-Zn金属成矿潜力依次降低,Au成矿潜力差。</p>

郝义, 王士路 .

内蒙古协力地区次火山岩地球化学特征及其成矿潜力

[J]. 矿产勘查, 2017,8(5):832-842.

URL     [本文引用: 1]

突泉协力地区晚侏罗—早白垩世的次火山岩主要由石英二长斑岩、花岗斑岩、闪长玢岩等组成.通过岩相学和地球化学分析,石英二长斑岩和闪长玢岩的里特曼指数δ介于2.55~3.84之间,为钙碱性岩系,铝饱和指数ACNK为1.00~1.18,为弱过铝质Ⅰ型花岗岩;稀土总量较低(∑REE为113.41×10-6~170.27×10-6),轻、重稀土分异较强(LaN/YbN为8.94~ 17.98),Eu具弱负异常,δCe为0.97~1.09,Ce异常不明显;Nb、Ta、P、Ti等相对亏损,Rb、Ba、K、Hf等相对富集,Nb/Ta比值(10.03~11.96,平均为10.87)小于16.2,岩浆来源于上地幔或下地壳,形成过程中同化混染了壳源物质.岩浆的形成与晚侏罗—早白垩世造山晚期华北板块北缘软流圈上隆过程中、在火山型被动陆缘处发生强烈的构造—岩浆改造有关,其岩石地球化学及含矿性参数显示,研究区具有寻找次火山岩—斑岩型Au、Ag、Cu矿的潜力.

张峰, 陈建平, 徐涛 , .

东准噶尔晚古生代依旧存在俯冲消减作用——来自石炭纪火山岩岩石学、地球化学及年代学证据

[J]. 大地构造与成矿学, 2014,38(1):140-156.

DOI:10.3969/j.issn.1001-1552.2014.01.014      URL     [本文引用: 1]

东准噶尔地区石炭纪巴塔玛依内山组火山岩分布广泛,规模巨大。对 其岩石学、元素地球化学及同位素地球化学研究表明:1)该套火山岩岩石类型复杂,具玄武岩-安山岩-英安岩-流纹岩组合特征,属高钾钙碱性火山岩系,并富 集大离子亲石元素(Sr、K、Rb、Ba、Th)和轻稀土元素,亏损高场强元素(Nb、Ta、Ti)和重稀土元素,87Sr/86Sr和143Nd /144Nd初始值分别为0.70385~0.71312,0.152378~0.512998,εNd(t)多介于3.0~6.2之间,显示了与俯冲消 减作用相关的不成熟弧后盆地火山岩地球化学特征。2)火山岩物质来源以亏损地幔源为主,并混有少量主体由古生代残余洋壳、岛弧体系组成的年轻下地壳物质。 其中,基性熔岩以亏损地幔源为主,并在岩浆源区与少量新生地壳物质发生了近乎完全的壳-幔岩浆混合和Sm-Nd同位素体系均一化,其形成很可能与俯冲沉积 物和(或)俯冲洋壳变质脱水产生的流体引起上覆地幔楔物质的部分熔融有关;而酸性熔岩与基性熔岩存在明显的不同,酸性熔岩是少量幔源岩浆经强烈结晶分异和 经历较多壳源物质混染的结果。3)玄武岩全岩 Sm-Nd等时线年龄为319.7±5.9 Ma,与区域地质构造背景和已有化石证据基本一致,代表了火山岩的形成时代。综合研究表明,东准噶尔地区320 Ma左右依旧存在古亚洲洋的俯冲消减作用,准噶尔古洋盆最终闭合时间应介于320~311 Ma之间。在此过程中,火山岩浆作用强烈,蕴含成矿物质丰富,东准噶尔地区找矿前景值得期待。

Hofmann A W .

Chemical differentiation of the earth: the relationship between mantle, continental crust, and oceanic crust

[J]. Earth and Planetary Science Letters, 1988,90:297-314.

DOI:10.1016/0012-821X(88)90132-X      URL     [本文引用: 1]

The average chemical compositions of the continental crust and the oceanic crust (represented by MORB), normalized to primitive mantle values and plotted as functions of the apparent bulk partition coefficient of each element, form surprisingly simple, complementary concentration patterns. In the continental crust, the maximum concentrations are on the order of 50 to 100 times the primitive-mantle values, and these are attained by the most highly incompatible elements Cs, Rb, Ba, and Th. In the average oceanic crust, the maximum concentrations are only about 10 times the primitive mantle values, and they are attained by the moderately incompatible elements Na, Ti, Zr, Hf, Y and the intermediate to heavy REE. This relationship is explained by a simple, two-stage model of extracting first continental and then oceanic crust from the initially primitive mantle. This model reproduces the characteristic concentration maximum in MORB. It yields quantitative constraints about the effective aggregate melt fractions extracted during both stages. These amount to about 1.5% for the continental crust and about 8 10% for the oceanic crust. The comparatively low degrees of melting inferred for average MORB are consistent with the correlation of Na 2O concentration with depth of extrusion [1], and with the normalized concentrations of Ca, Sc, and Al ( 3) in MORB, which are much lower than those of Zr, Hf, and the HREE ( 10). Ca, Al and Sc are compatible with clinopyroxene and are preferentially retained in the residual mantle by this mineral. This is possible only if the aggregate melt fraction is low enough for the clinopyroxene not to be consumed. A sequence of increasing compatibility of lithophile elements may be defined in two independent ways: (1) the order of decreasing normalized concentrations in the continental crust; or (2) by concentration correlations in oceanic basalts. The results are surprisingly similar except for Nb, Ta, and Pb, which yield inconsistent bulk partition coefficients as well as anomalous concentrations and standard deviations. The anomalies can be explained if Nb and Ta have relatively large partition coefficients during continental crust production and smaller coefficients during oceanic crust production. In contrast, Pb has a very small coefficient during continental crust production and a larger coefficient during oceanic crust production. This is the reason why these elements are useful in geochemical discrimination diagrams for distinguishing MORB and OIB on the one hand from island arc and most intracontinental volcanics on the other. The results are consistent with the crust-mantle differentiation model proposed previously [2]. Nb and Ta are preferentially retained and enriched in the residual mantle during formation of continental crust. After separation of the bulk of the continental crust, the residual portion of the mantle was rehomogenized, and the present-day internal heterogeneities between MORB and OIB sources were generated subsequently by processes involving only oceanic crust and mantle. During this second stage, Nb and Ta are highly incompatible, and their abundances are anomalously high in both OIB and MORB. The anomalous behavior of Pb causes the so-called ead paradox , namely the elevated U/Pb and Th/Pb ratios (inferred from Pb isotopes) in the present-day, depleted mantle, even though U and Th are more incompatible than Pb in oceanic basalts. This is explained if Pb is in fact more incompatible than U and Th during formation of the continental crust, and less incompatible than U and Th during formation of oceanic crust.

Batchelor R A, Bowden P .

Petrogenetic interpretation of granitoid rock series using multicationic parameters

[J]. Chemical Geology, 1985,48(1/4):43-45.

DOI:10.1016/0009-2541(85)90034-8      URL     [本文引用: 1]

Granitoid rock compositions from a range of tectonic environments are plotted on a multicationic diagram devised by de la Roche and his coworkers. This shows that there is a systematic change through an orogenic cycle which leads progressively to the ultimate development of alkaline magmas. Possible source materials and mechanisms of magma generation are considered from analysis of mineral compositional vectors. These suggest that most granitoid series result from a two-stage process. First, fractional crystallisation of clinopyroxene, olivine and calcic plagioclase from a basic source with tholeiitic affinities produces a magma of intermediate composition. This magma then undergoes periodic mixing with a felsic magma followed by in situ fractionation to generate individual intrusions within granitoid series.

徐克勤, 胡受奚, 孙明志 , .

论花岗岩的成因系列——以华南中生代花岗岩为例

[J]. 地质学报, 1983,( 2):107-118.

[本文引用: 1]

祁进平, 陈衍景, Pirajn F .

东北地区浅成低温热液矿床的地质特征和构造背景

[J]. 矿物岩石, 2005,25(2):47-59.

DOI:10.3969/j.issn.1001-6872.2005.02.009      URL     [本文引用: 2]

通过中国东北地区浅成低温热液矿床的综合特征研究,将矿床的分布划分为德尔布干、呼玛、小兴安岭和吉东4个矿集区,根据其矿床地质、地球化学特征初步确定成矿流体主要来自大气降水,部分混有岩浆水;成矿物质主要来自赋矿围岩和成矿岩浆-流体系统;多数矿床形成于中低温、中浅成环境,个别矿床成矿温度高、深度大,显示了斑岩型或造山型与浅成低温溶液型成矿系统之间的连续性;厘定大规模成岩成矿时间为130Ma左右,构造环境是古亚洲洋闭合后陆陆碰撞过程的挤压-伸展转变体制,并以矿集区尺度的CMF模式解释了浅成低温热液矿床岩浆-流体系统的发育机制.

黑龙江省地质矿产局.

1∶20万区域地质调查报告(穆棱镇公社幅和东宁县幅部分)

[R]. 哈尔滨: 黑龙江省地质矿产局, 1979, 78-103.

[本文引用: 1]

黑龙江省地质矿产局第一地质调查所.

1∶5万区域地质调查报告(东宁县幅、闹枝沟幅和大肚川幅部分)

[R]. 哈尔滨: 黑龙江省地质矿产局, 1986, 60-94.

[本文引用: 2]

门兰静 .

黑龙江东宁县金厂超大型金矿床的地质、地球化学特征及成矿模式

[D]. 长春:吉林大学, 2008.

[本文引用: 3]

Feiss P Geoffrey .

Magmatic sources of copper in porphyry copper deposits

[J]. Economic Geology, 1978: 397-404.

DOI:10.2113/gsecongeo.73.3.397      URL     [本文引用: 2]

Abstract p>During crystallization of a granitic magma, copper is shown to prefer octahedral sites, be they in the melt or in crystalline phases. Burns and Fyfe (1964) showed that the Al2O3/(K2O + Na2O + CaO) ratio of the magma is proportional to the number of octahedral sites available in the melt. A relatively large alumina/alkali ratio will mean more octahedral sites in the melt, a higher retention of copper in the melt, and, thus, a greater likelihood of porphyry-type mineralization, as the copper will still be in the melt at the hydrothermal stage. A comparison of this alumina/alkali ratio for mineralized and barren intrusives in the southwestern U. S. porphyry belt and in the Caribbean indicates that this relationship holds true. Generally speaking, for Laramide intrusives, mineralized stocks have a normative corundum content 2.5 weight percent greater than that of barren intrusives. This result suggests that in composite intrusives the more aluminous ones are better targets for porphyry mineralization and that early formed ferromagnesian minerals from mineralized intrusives should be copper deficient compared to barren systems (Kesler et al., 1975a).</p

刘建明, 张锐, 张庆洲 .

大兴安岭地区的区域成矿特征

[J]. 地学前缘, 2004,11(1):269-277.

DOI:10.3321/j.issn:1005-2321.2004.01.024      URL     [本文引用: 1]

中国大兴安岭地区位于东西向古生代古亚洲构造成矿域与北北东向中新生代滨西太平洋构造成矿域强烈叠加、复合、转换的部位。从而使大兴安岭地区的成矿地质条件优越、成矿期次多、成矿强度大、矿床类型多样。近年来区内找矿工作有了新突破 ,对内生金属矿床区域成矿规律的认识也有了新的进展 ,文中试图作一个阶段性的总结。文章将大兴安岭地区对照其大地构造单元划分成 4个成矿带 ,总结了两期主要成矿期 (海西期和燕山期 ) ,归纳出两大主要成矿系列 ,并分别就最近几年的新成果进行了典型矿床的举例

赵春荆, 彭玉鲸, 党增欣 , .

吉黑东部构造格架及地壳演化

[M]. 沈阳: 辽宁大学出版社, 1996, 1-186.

[本文引用: 1]

逄伟 .

延边地区浅成低温低硫化型金矿床的成矿模式研究

[D]. 长春:吉林大学, 2009.

[本文引用: 1]

周永昶, 姜开君 .

延边地区显生宙花岗岩成因系列及其构造岩浆演化序列[G]//长春地质学院40周年科学研究论文集

长春: 吉林科技出版社, 1992: 204-212.

[本文引用: 2]

赵俊康 .

延边小西南岔金铜矿成矿地球化学动力学研究

[D]. 长春:吉林大学, 2007.

[本文引用: 1]

马东元 .

黑龙江东宁县神洞叶蜡石矿地质特征

[J]. 建材地质, 1993,6:9-14.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com