Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (6): 1368-1380    DOI: 10.11720/wtyht.2020.1426
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于优化交错网格有限差分法的VSP逆时偏移
刘炜1(), 王彦春2, 毕臣臣2, 徐仲博2
1.成都理工大学 地球物理学博士后科研流动站,四川 成都 610059
2.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
Reverse time migration of VSP data based on the optimal staggered-grid finite-difference method
LIU Wei1(), WANG Yan-Chun2, BI Chen-Chen2, XU Zhong-Bo2
1. Post-doctoral Research Station of Geophysics,Chengdu University of Technology,Chengdu 610059,China
2. School of Geophysics and Information Technology,China University of Geosciences,Beijing 100083,China
全文: PDF(7352 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

相比于常规地面地震资料,VSP地震数据具有波场信息丰富、分辨率和信噪比高等优点;逆时偏移方法基于双程波波动方程,被认为是目前成像精度最高的地震资料偏移成像方法,二者相互结合,有利于精确刻画井旁构造以及识别地下复杂地质构造。本文从二维变密度声波波动方程入手,研究基于优化交错网格有限差分法的VSP数据高精度逆时偏移方法。针对逆时偏移的不同方面,采用优化交错网格有限差分法进行高精度波场延拓,采用PML吸收边界条件压制由人工截断边界造成的边界反射,采用有效边界存储策略降低波场存储需求,采用震源归一化零延迟互相关成像条件进行高精度成像,采用高阶拉普拉斯滤波方法压制低频成像噪声。模型测试结果表明:本文方法能够实现VSP数据的高精度逆时偏移成像,相比于常规地面地震数据的逆时偏移,VSP数据的逆时偏移能够更加精确地识别如高陡构造、速度变化剧烈构造等地下复杂地质构造,验证了方法的有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘炜
王彦春
毕臣臣
徐仲博
关键词 VSP优化交错网格有限差分法逆时偏移存储策略噪声压制    
Abstract

Compared with conventional surface seismic data,VSP seismic data have many advantages,such as abundant wavefield information,high resolution and signal-to-noise ratio information.Reverse time migration (RTM) method based on two-way wave equation is considered to be the most accurate imaging method for seismic data at present.The combination of the VSP data and RTM method is helpful to describing the structures beside wells and identifying the complex geological structures accurately.Based on the two-dimensional (2D) variable density acoustic wave equation,the authors studied the high-precision RTM method of VSP data using the optimal staggered-grid finite-difference method.For different aspects of this VSP RTM method,different measures were adopted.First,the authors used the optimal staggered-grid finite-difference method to realize high-precision wavefield extrapolation.Second,the authors used the PML absorbing boundary condition to suppress boundary reflections caused by the limited computing space of model.Third,the authors used the effective boundary storage strategy to reduce the storage requirements of source wavefields.Fourth,the authors used the normalized cross-correlation imaging condition of sources to handle RTM imaging of VSP data.Finally,the high-order Laplacian filtering method was used to suppress the low-frequency noises of RTM imaging results.The different model test results show that the VSP RTM method proposed in this paper can achieve high-precision RTM imaging for VSP data.Compared with the conventional RTM method of surface seismic data,the RTM method of VSP data can more accurately identify the underground complex geological structures, such as the high-steep structures and the structures with sharp velocity changes,which verifies the effectiveness of the proposed method.

Key wordsVSP    optimal staggered-grid finite-difference    reverse time migration    storage strategy    noise suppression
收稿日期: 2019-12-13      出版日期: 2020-12-29
:  P631.4  
基金资助:中国石化科技发展部项目“沉积模式约束岩相和流体反演方法研究”(P18070-6)
作者简介: 刘炜(1991-),博士后,主要从事VSP地震波场数值模拟及逆时偏移方法等方面的研究工作。Email:lwqhsy123@163.com
引用本文:   
刘炜, 王彦春, 毕臣臣, 徐仲博. 基于优化交错网格有限差分法的VSP逆时偏移[J]. 物探与化探, 2020, 44(6): 1368-1380.
LIU Wei, WANG Yan-Chun, BI Chen-Chen, XU Zhong-Bo. Reverse time migration of VSP data based on the optimal staggered-grid finite-difference method. Geophysical and Geochemical Exploration, 2020, 44(6): 1368-1380.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1426      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I6/1368
Fig.1  不同差分算子长度时交错网格有限差分法的频散误差随波数的变化规律
a—传统交错网格有限差分法;b—优化交错网格有限差分法
Fig.2  相同差分算子长度时(M=5)交错网格有限差分法的频散误差随传播方向的变化规律
a—传统交错网格有限差分法;b—优化交错网格有限差分法
Fig.3  不同差分算子长度时交错网格有限差分法在不同时刻的波场快照
a—传统交错网格有限差分法,M=5;b—优化交错网格有限差分法,M=5;c—传统交错网格有限差分法,M=10;d—优化交错网格有限差分法,M=10;从左至右依次为1 s和2.5 s
Fig.4  不同交错网格有限差分法的稳定性因子曲线
Fig.5  PML吸收边界条件简易示意
Fig.6  有效边界存储策略简易示意
Fig.7  多层层状模型
Fig.8  多层层状模型在不同时刻的波场快照
a—正传波场;b—重构波场;c—正传波场和重构波场之间的差异;从左至右依次为0.4、0.8、1.2 s时刻
Fig.9  二维SEG/EAGE盐丘模型
Fig.10  二维SEG/EAGE盐丘模型的第57炮VSP数据逆时偏移结果
a—零延迟互相关成像条件;b—震源归一化零延迟互相关成像条件
Fig.11  二维SEG/EAGE盐丘模型的常规地面地震数据(左)和VSP数据(右)的逆时偏移结果
a—地面数据低频噪声压制前;b—VSP数据低频噪声压制前;c—地面数据低频噪声压制后;d—VSP数据低频噪声压制后
Fig.12  二维SEG/EAGE盐丘模型VSP逆时偏移结果的幅值谱和相位谱
a—噪声压制前幅度谱;b—噪声压制后幅度谱;c—噪声压制前相位谱;d—噪声压制后相位谱
Fig.13  Marmousi模型
Fig.14  Marmousi模型的第59炮VSP数据逆时偏移结果
a—零延迟互相关成像条件;b—震源归一化零延迟互相关成像条件
Fig.15  Marmousi模型的常规地面地震数据和VSP数据的逆时偏移结果
a—地面数据低频噪声压制前;b—VSP数据低频噪声压制前;c—地面数据低频噪声压制后;d—VSP数据低频噪声压制后
Fig.16  平滑后的Marmousi模型及其逆时偏移结果
a—速度;b—密度;c—地面地震数据逆时偏移结果;d—VSP数据逆时偏移结果
[1] 蔡志东, 彭更新, 李青, 等. 利用VSP数据研究井旁断层特征[J]. 石油地球物理勘探, 2018,53(s2):90-97.
[1] Cai Z D, Peng G X, Li Q, et al. Fault characteristics identification at well sites on VSP data[J]. Oil Geophysical Prospecting, 2018,53(s2):90-97.
[2] Yan H Y, Liu Y, Zhang H. Prestack reverse-time migration with a time-space domain adaptive high-order staggered-grid finite-difference method[J]. Exploration Geophysics, 2013,44(2):77-86.
[3] Whitmore D. Iterative depth migration by backward time propagation[C]// 53rd Annual International Meeting,SEG,Expanded Abstracts, 1983: 382-385.
[4] Baysal E, Kosloff D D, Sherwood J W C. Reverse time migration[J]. Geophysics, 1983,48(11):1514-1524.
[5] McMechan G. Migration by extrapolation of time-dependent boundary values[J]. Geophysical Prospecting, 1983,31(3):413-420.
[6] 薛浩, 刘洋, 杨宗青. 基于优化时空域频散关系的声波方程有限差分最小二乘逆时偏移[J]. 石油地球物理勘探, 2018,53(4):745-753.
[6] Xue H, Liu Y, Yang Z Q. Least-square reverse time migration of finite-difference acoustic wave equation based on an optimal time-space dispersion relation[J]. Oil Geophysical Prospecting, 2018,53(4):745-753.
[7] Nguyen B D, McMechan G A. Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration[J]. Geophysics, 2015,80(1):S1-S18.
[8] Yan J, Sava P. Isotropic angle-domain elastic reverse-time migration[J]. Geophysics, 2008,73(6):S229-S239.
[9] Xie W, Yang D H, Liu F Q, et al. Reverse-time migration in acoustic VTI media using a high-order stereo operator[J]. Geophysics, 2014, 79(3):WA3-WA11.
[10] Xiao X, Leaney W S. Local vertical seismic profiling (VSP) elastic reverse-time migration and migration resolution:Salt-flank imaging with transmitted P-to-S waves[J]. Geophysics, 2010,75(2):S35-S49.
[11] 蔡晓慧, 刘洋, 王建民, 等. 基于自适应优化有限差分方法的全波VSP逆时偏移[J]. 地球物理学报, 2015,58(9):3317-3334.
[11] Cai X H, Liu Y, Wang J M, et al. Full-wavefield VSP reverse-time migration based on the adaptive optimal finite-difference scheme[J]. Chinese Journal of Geophysics, 2015,58(9):3317-3334.
[12] Shi Y, Wang Y H. Reverse time migration of 3D vertical seismic profile data[J]. Geophysics, 2016,81(1):S31-S38.
[13] 严红勇, 刘洋. Kelvin-Voigt黏弹性介质地震波场数值模拟与衰减特征[J]. 物探与化探, 2012,36(5):806-812.
[13] Yan H Y, Liu Y. Numerical modeling and attenuation characteristics of seismic wavefield in Kelvin-Voigt viscoelastic media[J]. Geophysical and Geochemical Exploration, 2012,36(5):806-812.
[14] Dablain M A. The application of high-difference to the scalar wave equation[J]. Geophysics, 1986,51(1):54-66.
[15] Liu Y, Sen M K. A new time-space domain high-order finite-difference method for the acoustic wave equation[J]. Journal of Computational Physics, 2009,228(23):8779-8806.
[16] Liu Y, Sen M K. Scalar wave equation modeling with time-space domain dispersion-relation-based staggered-grid finite-difference schemes[J]. Bulletin of the Seismological Society of America, 2011,101(1):141-159.
[17] Liu Y. Globally optimal finite-difference schemes based on least squares[J]. Geophysics, 2013,78(4):T113-T132.
[18] Liu Y. Optimal staggered-grid finite-difference schemes based on least-squares for wave equation modelling[J]. Geophysical Journal International, 2014,197(2):1033-1047.
[19] Clapp R G. Reverse time migration:Saving the boundaries[R]. Stanford Exploration Project, 2008,136:136-144.
[20] 王保利, 高静怀, 陈文超, 等. 地震叠前逆时偏移的有效边界存储策略[J]. 地球物理学报, 2012,55(7):2412-2421.
[20] Wang B L, Gao J H, Chen W C, et al. Efficient boundary storage strategies for seismic reverse time migration[J]. Chinese Journal of Geophysics, 2012,55(7):2412-2421.
[21] 段沛然, 谷丙洛, 李振春. 基于优化算子边界存储策略的高效逆时偏移方法[J]. 石油地球物理勘探, 2019,54(1):93-101.
[21] Duan P R, Gu B L, Li Z C. An efficient reverse time migration in the vertical time domain based on optimal operator boundary storage strategy[J]. Oil Geophysical Prospecting, 2019,54(1):93-101.
[22] 王娟, 李振春, 陶丽. 逆时偏移成像条件研究[J]. 地球物理学进展, 2012,27(3):1173-1182.
[22] Wang J, Li Z Q, Tao L. The research on imaging condition of reverse time migration[J]. Progress in Geophysics, 2012,27(3):1173-1182.
[23] Claerbout J F. Toward a unified theory of reflector mapping[J]. Geophysics, 1971,36(3):467-481.
[24] Chattopadhyay S, McMechan G A. Imaging conditions for prestack reverse-time migration[J]. Geophysics, 2008,73(3):S81-S89.
[25] 许璐, 孟小红, 刘国峰. 逆时偏移去噪方法研究进展[J]. 地球物理学进展, 2012,27(4):1548-1556.
[25] Xu L, Meng X H, Liu G F. Reverse time migration and removing artifacts[J]. Progress in Geophysics, 2012,27(4):1548-1556.
[26] 郭念民, 冯雪梅, 李海山. 高阶拉普拉斯算子逆时偏移低频噪声去除方法[J]. 石油物探, 2013,52(1):642-649.
[26] Guo N M, Feng X M, Li H S. Research on higher-order Laplacian operator denoising method in reverse-time migration[J]. Geophysical Prospecting for Petroleum, 2013,52(1):642-649.
[27] 周学明, 李庆春, 马婷. 弹性波叠前逆时偏移[J]. 物探与化探, 2013,37(2):274-279.
[27] Zhou X M, Ling Q C, Ma T. Prestack reverse time migration for elastic wave[J]. Geophysical and Geochemical Exploration, 2013,37(2):274-279.
[28] 宋宗平, 陈可洋, 杨微, 等. 地震波逆时偏移中两种成像条件应用效果对比[J]. 物探与化探, 2019,43(3):618-625.
[28] Song Z P, Chen K Y, Yang W, et al. Comparison of the application effect of two imaging conditions in seismic wave reverse time migration[J]. Geophysical and Geochemical Exploration, 2019,43(3):618-625.
[29] Claerbout J F. Imaging the earth’s interior[M]. Palo Alto,California:Blackwell Scientific Publications,Inc., 1985.
[30] Kindelan M, Kamel A, Sguazzero P. On the construction and efficiency of staggered numerical differentiators for the wave equation[J]. Geophysics, 1990,55(1):107-110.
[31] Ren Z M, Liu Y. Acoustic and elastic modeling by optimal time-space-domain staggered-grid finite-difference schemes[J]. Geophysics, 2015,80(1):T17-T40.
[32] 王守东. 声波方程完全匹配层吸收边界[J]. 石油地球物理勘探, 2003,38(1):31-34.
[32] Wang S D. Absorbing boundary condition for acoustic wave equation by perfectly matched layer[J]. Oil Geophysical Prospecting, 2003,38(1):31-34.
[33] 丁科. PML吸收边界条件影响因素分析[J]. 物探与化探, 2012,36(4):623-627.
[33] Ding K. An analysis of factors affecting PML absorbing boundary condition[J]. Geophysical and Geochemical Exploration, 2012,36(4):623-627.
[34] 王维红, 柯璇, 裴江云. 完全匹配层吸收边界条件应用研究[J]. 地球物理学进展, 2013,28(5):2508-2514.
[34] Wang W H, Ke X, Pei J Y. Application investigation of perfectly matched layer absorbing boundary condition[J]. Progress in Geophysics, 2013,28(5):2508-2514.
[1] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[2] 段莹, 张高成, 谭雅丽. 泌阳凹陷高陡构造带地震成像[J]. 物探与化探, 2021, 45(4): 981-989.
[3] 陈紫静, 陈清礼. 瞬变电磁的逆时偏移成像方法[J]. 物探与化探, 2020, 44(6): 1415-1419.
[4] 黄华, 李忠生, 郑革辉, 吴大林, 王中圣, 袁子恒. 震源车压制城市噪声机理及效果分析[J]. 物探与化探, 2020, 44(4): 803-809.
[5] 张毅, 毛宁波, 何丽娟. 优势道叠加技术在岩性油气藏识别中的应用[J]. 物探与化探, 2020, 44(3): 499-506.
[6] 马振, 孙成禹, 彭鹏鹏, 姚振岸. 速度误差和地震噪声对最小二乘逆时偏移的影响分析[J]. 物探与化探, 2020, 44(2): 329-338.
[7] 龚俊波, 王洪华, 王敏玲, 罗泽明. 逆时偏移在探地雷达数据处理中的应用[J]. 物探与化探, 2019, 43(4): 835-842.
[8] 罗天柱, 胡明顺, 韩迪, 任义强. VSP初至逐层递推层速度反演研究及应用[J]. 物探与化探, 2019, 43(3): 608-617.
[9] 宋宗平, 陈可洋, 杨微, 李来林, 吴清岭, 范兴才. 地震波逆时偏移中两种成像条件应用效果对比[J]. 物探与化探, 2019, 43(3): 618-625.
[10] 杨敬雅, 李相文, 刘永雷, 徐博, 高江涛, 王茂, 吴江勇, 张泉. 一种基于随钻VSP地震地质导向的钻井轨迹高效优化方法及其应用[J]. 物探与化探, 2019, 43(2): 257-265.
[11] 郭旭, 黄建平, 李振春, 黄金强, 朱峰. 基于行波分离的VTI介质逆时偏移[J]. 物探与化探, 2019, 43(1): 100-109.
[12] 许璐. 地震数据炮域规则化方法研究及应用[J]. 物探与化探, 2018, 42(6): 1245-1252.
[13] 李金丽, 曲英铭, 刘建勋, 李振春, 王凯, 于博. 三维黏声最小二乘逆时偏移方法模型研究[J]. 物探与化探, 2018, 42(5): 1013-1025.
[14] 彭鹏鹏, 孙成禹, 马振, 李文静. 近地表散射体波场特征分析及成像[J]. 物探与化探, 2018, 42(5): 990-998.
[15] 李金丽, 曲英铭, 刘建勋, 岳航羽, 李培, 陈德元. 天然气水合物储层弹性波最小二乘逆时偏移研究[J]. 物探与化探, 2017, 41(6): 1050-1059.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com