Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (6): 1361-1367    DOI: 10.11720/wtyht.2020.1578
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
不同高度重力数据和井中重力数据融合反演研究
高秀鹤1,2,3(), 熊盛青1(), 于长春1, 孙思源1
1.中国自然资源航空物探遥感中心, 北京 100083
2.自然资源部 航空地球物理与遥感地质重点实验室, 北京 100083
3.中国地质大学(北京) 地球物理与信息技术学院, 北京 100029
A study of joint inversion of gravity data from multi-planes and boreholes
GAO Xiu-He1,2,3(), XIONG Sheng-Qing1(), YU Chang-Chun1, SUN Si-Yuan1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. Airborne Geophysics and Remote Sensing Geology Ministry of Natural Resources, Beijing 100029, China
3. School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100029, China
全文: PDF(1768 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

影响重力三维反演效果的主要因素是观测数据,包括观测数据的质量、数量、位置等。本文使用正则化反演方法研究不同高度及井中观测重力数据对反演结果的影响。首先,不同高度重力数据单独反演,验证反演效果与观测面高度的关系。然后,融合反演不同高度的重力数据,验证数据融合对反演效果的改善作用;基于融合反演的有益效果,当仅有单一平面观测重力数据时,通过延拓技术获得不同高度的延拓数据,融合延拓数据和观测数据,以改善反演效果。最后,将井中重力、井中密度数据加入到反演中,利用其距离目标体更近的优势,进一步提高垂直方向分辨率。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高秀鹤
熊盛青
于长春
孙思源
关键词 不同高度井数据重力数据融合反演延拓    
Abstract

The essential factor for determining the effect of gravity 3D inversion is the observation data, which include the quality, quantity and location. In this paper, the regularized inversion method is used to study the influence of gravity data from different heights and well observations on the inversion results. First of all, gravity data of different heights are inverted separately to verify the relationship between the inversion effect and the height of the observation surface. Then, the gravity data of different heights are inverted together to verify the improvement effect of the joint inversion. On the basis of the beneficial effects of joint inversion, when multi-plane observation data are unavailable, continuation gravity data at different heights are obtained through continuation technology, and joint continuation data and observation data are inverted to improve the inversion effect. This applies to a variety of situations. For example, when only the ground observation gravity data are available, the down continuation data and ground observation gravity data are inverted jointly; when only the airborne observation gravity data are available, the down continuation data and airborne observation gravity data are inverted jointly. Finally, taking advantage of the fact that the measured data in the boreholes are closer to the anomaly, it is added to the inversion to further improve the vertical resolution.

Key wordsdifferent heights    borehole data    gravity    joint inversion    continuation
收稿日期: 2019-12-13      出版日期: 2020-12-29
:  P631  
基金资助:国家重点研发计划项目“综合航空物探地球物理探测系统集成方法技术研究”(2017YFC0602201);中国博士后科学基金(2020M670601);国家自然科学基金(42004125);自然资源部航空地球物理与遥感地质重点实验室课题(2020YFL11)
通讯作者: 熊盛青
作者简介: 高秀鹤(1991-),女,博士,主要从事重磁及张量梯度数据反演研究工作。Email:gaoxiuhevip@163.com;842091616@qq.com
引用本文:   
高秀鹤, 熊盛青, 于长春, 孙思源. 不同高度重力数据和井中重力数据融合反演研究[J]. 物探与化探, 2020, 44(6): 1361-1367.
GAO Xiu-He, XIONG Sheng-Qing, YU Chang-Chun, SUN Si-Yuan. A study of joint inversion of gravity data from multi-planes and boreholes. Geophysical and Geochemical Exploration, 2020, 44(6): 1361-1367.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1578      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I6/1361
Fig.1  立方体模型及正演重力数据
Fig.2  不同高度面观测重力数据单独反演结果的竖直切片(y=2.5 km)
Fig.3  不同高度面观测重力数据融合反演结果的竖直切片(y=2.5 km)
Fig.4  观测重力数据及其延拓重力数据融合反演结果的竖直切片(y=2.5 km)
Fig.5  不同位置井的井中重力和岩石密度
Fig.6  地面、地面以下300 m重力数据和井中重力、岩石密度数据融合反演结果(白色实线代表钻井位置)
Fig.7  双长方体模拟重力数据
Fig.8  含3%高斯噪声的模拟井中观测数据
Fig.9  双立方体模型反演结果 (白色实线代表钻井位置)
[1] 曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 1995.
[1] Zeng H L. Gravity field and gravity exploration [M]. Beijing: The Geological Publishing House, 1995.
[2] Blakely R J. Potential theory in gravity and magnetic applications [M]. Cambridge: Cambridge University Press, 1996.
[3] Li Y G, Oldenburg D W. 3-D inversion of gravity data[J]. Geophysics, 1998,63(1):109-119.
[4] 姚长利, 郝天珧, 管志宁. 重磁反演约束条件及三维物性反演技术策略[J]. 物探与化探, 2002,26(4):253-257.
[4] Yao C L, Hao T Y, Guan Z N. Restrictions in gravity and magnetic inversions and technical strategy of 3D properties inversion[J]. Geophysical and Geochemical Exploration, 2002,26(4):253-257.
[5] Geng M, Huang D, Yang Q, et al. 3D inversion of airborne gravity-gradiometry data using cokriging[J]. Geophysics, 2014,79(4):37-47.
[6] Last B J, Kubik K. Compact gravity inversion[J]. Geophysics, 1983,48(6):713-721.
[7] Guillen A, Menichetti V. Gravity and magnetic inversion with minimization of a specific functional[J]. Geophysics, 1984,49(8):1354-1360.
[8] Silva. Potential-field inversion: Choosing the appropriate technique to solve a geologic problem[J]. Geophysics, 2001,66(2):511-520.
[9] Sun J J, Li Y G. Adaptive Lp inversion for simultaneous recovery of both blocky and smooth features in a geophysical model[J]. Geophysical Journal International, 2014,197:882-899.
[10] 高秀鹤, 黄大年. 基于共轭梯度算法的重力梯度数据三维聚焦反演研究[J]. 地球物理学报, 2017,60(4):1571-1583.
[10] Gao X H, Huang D N. Research on 3D focusing inversion of gravity gradient tensor data based on a conjugate gradient algorithm[J]. Chinese Journal of Geophysics, 2017,60(4):1571-1583.
[11] Sun J J, Li Y G. Inversion of surface and borehole gravity with thresholding and density constraints[C]// 80th Annual international meeting, Society of Exploration Geophysicists, Expanded Abstrasts, 2010, 1798-1802.
[12] 陈华根, 李嘉虓, 吴健生, 等. MT-重力模拟退火联合反演研究[J]. 地球物理学报, 2012,55(2):663-670.
[12] Chen H G, Li J X, Wu J S, et al. Study on simulated-annealing MT-gravity joint inversion[J]. Chinese Journal of Geophysics, 2012,55(2):663-670.
[13] Luis A. Gallardo, Max A. Meju. Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data[J]. Geophysical Research Letters, 2003,30(13):1658.
[14] 殷长春, 孙思源, 高秀鹤, 等. 基于局部相关性约束的三维大地电磁数据和重力数据的联合反演[J]. 地球物理学报, 2018,61(1):358-367.
[14] Yin C C, Sun S Y, Gao X H, et al. 3D joint inversion of magnetotelluric and gravity data based on local correlation constraints[J]. Chinese Journal of Geophysics, 2018,61(1):358-367.
[15] Zhang C, Huang D N, Wu G C, et al. Calculation of Moho depth by gravity anomalies in Qinghai-Tibet plateau based on an improved iteration of parker-oldenburg inversion[J]. Pure and Applied Geophysics, 2015,172(10):2657-2668.
[16] Fedi M, Hansen P C, Paoletti V. Analysis of depth resolution in potential-field inversion[J]. Geophysics, 2005,70(6):A1-A11.
[17] Portniaguine O, Zhdanov M S. Focusing geophysical inversion images[J]. Geophysics, 1999,64(3):874-887.
[18] Fedi M, Rapolla A. 3D inversion of gravity and magnetic data with depth resolution[J]. Geophysics, 1999,64:452-460.
[19] Commer M. Three-dimensional gravity modelling and focusing inversion using rectangular meshes[J]. Geophysical Prospecting, 2011,59:966-979.
[20] 刘双, 张大莲, 刘天佑, 等. 井地磁测资料联合反演及应用[J]. 地质与勘探. 2008,44(6):69-72.
[20] Liu S, Zhang D L, Liu T Y, et al. Cooperative inversion and application of surface and borehole magnetic data[J]. Geology and Prospecting, 2008,44(6):69-72.
[21] 周帅. 重磁数据地质目标位置及物性高精度解释方法研究[D]. 长春:吉林大学, 2017.
[21] Zhou S. The study on high-precision interpretation methods of geological target position and physical property for gravity and magnetic data[D]. Changchun: Jilin University, 2017.
[1] 许海红, 韩小锋, 袁炳强, 张春灌, 王宝文, 赵飞, 段瑞锋. 基于径向基函数的1∶5万规则分布重力数据插值参数优选[J]. 物探与化探, 2021, 45(6): 1539-1552.
[2] 王冠鑫, 罗锋, 周锡华, 闫方. 航空重力弱信号提取的卡尔曼滤波方法研究[J]. 物探与化探, 2021, 45(1): 76-83.
[3] 周俊杰, 陈聪, 喻翔, 高玲举, 陈涛. 矿区重力三维物性反演的参考模型构建方法及应用[J]. 物探与化探, 2020, 44(4): 878-885.
[4] 罗锋, 王冠鑫, 周锡华, 李行素. 三轴稳定平台式航空重力测量数据处理方法研究与实现[J]. 物探与化探, 2019, 43(4): 872-880.
[5] 李西子, 郭华, 韩松, 刘浩军, 郑强. 航磁三分量向上延拓在判断地质体物性参数上的应用研究[J]. 物探与化探, 2019, 43(4): 881-891.
[6] 熊业刚, 罗铮, 张启全, 王海峰, 李祥, 朱波, 王振强. 逆掩断裂带正演分析与解释——以英雄岭地区为例[J]. 物探与化探, 2019, 43(3): 551-557.
[7] 刘芬, 王万银, 纪晓琳. 空间域和频率域平面位场延拓影响因素和稳定性分析[J]. 物探与化探, 2019, 43(2): 320-328.
[8] 俞岱, 何志军, 孙渊, 王颖. 基于波场延拓的反Q滤波方法比较[J]. 物探与化探, 2018, 42(2): 331-338.
[9] 张建兵, 王明, 赵百民, 刘前坤. 优选向上延拓技术在鞍山—本溪示范区航磁应用[J]. 物探与化探, 2017, 41(5): 951-957.
[10] 魏永强, 倪卫冲, 房江奇. 边界增强法在航磁数据处理中的应用[J]. 物探与化探, 2016, 40(1): 117-124.
[11] 赵亚博, 刘天佑. 迭代Tikhonov正则化位场向下延拓方法及其在尕林格铁矿的应用[J]. 物探与化探, 2015, 39(4): 743-748.
[12] 陈炳锦. 地面高精度磁法在陕南西乡地区磁铁矿勘查中的应用[J]. 物探与化探, 2014, 38(6): 1129-1133.
[13] 宋双, 张恒磊. 向下延拓在深部矿产勘探中的应用——以青海某矿区为例[J]. 物探与化探, 2014, 38(6): 1195-1199.
[14] 郭见乐. 基于粘滞性声波方程的吸收补偿方法[J]. 物探与化探, 2014, (3): 577-581.
[15] 郭华, 王明, 谢汝宽, 安战锋. 向上延拓对斜导数方法处理航磁异常的影响[J]. 物探与化探, 2012, 36(1): 137-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com