Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (5): 1172-1182    DOI: 10.11720/wtyht.2020.1565
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
二连—东乌旗地区固定翼三频航电数据反演方法应用对比研究
李飞1,2,3,4(), 谭捍东1, 孟庆敏2,3,4, 吴俊彦1, 丁志强2,3,4
1.中国地质大学(北京) 地球物理与信息技术学院, 北京 100083
2.中国地质科学院 地球物理地球化学勘查研究所, 河北 廊坊 065000
3.自然资源部 地球物理电磁法探测技术重点实验室, 河北 廊坊 065000
4.国家现代地质勘查工程技术研究中心, 河北 廊坊 065000
A comparative study of the inversion methods of fixed-wing three-frequency airborne electromagnetic data in Erenhot-East Ujimqin Banner area
LI Fei1,2,3,4(), TAN Han-Dong1, MENG Qing-Min2,3,4, WU Jun-Yan1, DING Zhi-Qiang2,3,4
1.School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China
2.Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
3.Key Laboratory of Geophysical Electromagnetic Probing Technologies, Ministry of Natural Resources, Langfang 065000, China
4.National Research Centre of Geoexploration Technology, Langfang 065000, China
全文: PDF(6048 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

固定翼频率域航电测量效率高,空间分辨率高。以往我国三频航电实测数据已获得良好的解释成果,但均以定性解释和一维反演为主,二维反演应用较少。本文将快速近似反演、一维反演、二维反演引入到二连—东乌旗重点航电异常实测数据的解释中,并将三种方法的应用效果进行了对比。快速近似反演以视电阻率计算为基础,一维反演采用Brent方法,二维反演采用数据空间Occam反演,采用Rodi法求解雅克比矩阵。结果显示,快速近似反演可快速有效地提供大数据量地下电性分布信息,一维反演可提供稳定的、具一定深度的反演结果,二维反演则具有明显的横向、纵向分辨率优势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李飞
谭捍东
孟庆敏
吴俊彦
丁志强
关键词 固定翼三频航电快速近似反演一维反演二维反演二连—东乌旗    
Abstract

The fixed-wing frequency-domain airborne electromagnetic method has the characteristics of a high efficiency and a high spatial resolution. In the past, The three-frequency airborne electromagnetic data have gained many good results in China. Nevertheless, they are mainly plane qualitative interpretation results, with few quantitative inversion calculations performed, which limits the improvement of interpretation level. In this paper, fast approximate inversion, one-dimensional inversion and two-dimensional inversion are introduced into the interpretation of the field data of the key AFEM anomalies in Erenhot-East Ujimqin Banner area, and the application effects of the three methods are compared with each other. Fast approximate inversion is based on the calculation of apparent resistivity. Brent method is used for the one-dimensional inversion. Occam inversion is used for the two-dimensional inversion, and Rodi method is used to solve Jacobian matrix. The results show that fast approximate inversion can quickly and effectively provide a large quantity of underground electrical distribution information, one-dimensional inversion can provide the stable inversion results with a certain depth, and two-dimensional inversion has an advantage of obvious horizontal and vertical resolution.

Key wordsfixed-wing three-frequency airborne electromagnetic method    fast approximate inversion    1D inversion    2D inversion    Erenhot-East Ujimqin Banner area
收稿日期: 2019-12-01      出版日期: 2020-10-26
:  P631  
基金资助:国家重点研发计划项目(2017YFC0601900);中国地质调查局项目(DD20201179)
作者简介: 李飞(1980-),男,高级工程师,硕士,主要从事航空物探方法技术理论研究与应用工作。Email: lifei@igge.cn
引用本文:   
李飞, 谭捍东, 孟庆敏, 吴俊彦, 丁志强. 二连—东乌旗地区固定翼三频航电数据反演方法应用对比研究[J]. 物探与化探, 2020, 44(5): 1172-1182.
LI Fei, TAN Han-Dong, MENG Qing-Min, WU Jun-Yan, DING Zhi-Qiang. A comparative study of the inversion methods of fixed-wing three-frequency airborne electromagnetic data in Erenhot-East Ujimqin Banner area. Geophysical and Geochemical Exploration, 2020, 44(5): 1172-1182.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1565      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I5/1172
Fig.1  模型数据二维反演结果
Fig.2  查干敖包航电异常7940线综合剖面
Fig.3  查干敖包航电异常地质图
Fig.4  查干敖包航电异常反演综合剖面
Fig.5  准苏吉花敖包航电异常8930线综合剖面
Fig.6  准苏吉花敖包航电异常地质图
Fig.7  准苏吉花敖包航电异常反演综合剖面
Fig.8  查干敖包航电异常三层模型1D反演不同参数对比
a—ρ1=5 Ω·m,ρ2=10 Ω·m,ρ3=30 Ω·m; b—ρ1=5 Ω·m,ρ2=10 Ω·m,ρ3=30 Ω·m
Fig.9  查干敖包航电异常2D反演局部对比
[1] 孟庆敏, 满延龙. 频率域航空电磁法的应用领域及应用机制[J]. 物探与化探, 2013,37(2):260-263.
doi: 10.11720/j.issn.1000-8918.2013.2.15
[1] Meng Q M, Man Y L. The application fields and application mechanism of the frequency field airborne electromagnetic method[J]. Geophysical and Geochemical Exploration, 2013,37(2):260-263.
doi: 10.11720/j.issn.1000-8918.2013.2.15
[2] 高维, 舒晴, 屈进红, 等. 国外航空物探测量系统近年来若干进展[J]. 物探与化探, 2016,40(6):1116-1124.
[2] Gao W, Shu Q, Qu J H, et al. New progress of aerogeophysical techniques abroad[J]. Geophysical and Geochemical Exploration, 2016,40(6):1116-1124.
[3] 熊盛青. “十五”以来我国航空物探进展与展望[J]. 物探与化探, 2007,31(6):479-484.
[3] Xiong S Q. The advances of aerogeophysical survey in China since the Tenth Five Year Plan and its development trend[J]. Geophysical and Geochemical Exploration, 2007,31(6):479-484.
[4] 卢建忠, 方迎尧, 吴其反. 航空地球物理在海岸带水资源环境调查中的作用[J]. 物探与化探, 2010,34(4):517-522.
[4] Lu J Z, Fang Y Y, Wu Q F. The role of aerogeophysical survey in the water resource environment survey of coastal areas[J]. Geophysical and Geochemical Exploration, 2010,34(4):517-522.
[5] 孟庆敏, 高卫东, 满延龙, 等. 航空电磁法区域农业生态地质调查与评价[J]. 物探与化探, 2004,28(4):333-336, 340.
[5] Meng Q M, Gao W D, Man Y L, et al. The tentative application of integrated aerogeophysical survey to the prospecting for copper-polymetallic deposits in the forest and grassland region[J]. Geophysical and Geochemical Exploration, 2004,28(4):333-336, 340.
[6] 丁志强, 李飞, 崔志强, 等. 航空物探综合站在大兴安岭中南段找矿中的应用[J]. 物探化探计算技术, 2015,37(3):306-312.
[6] Ding Z Q, Li F, Cui Z Q, et al. The application of airborne geophysical general station to prospecting in the middle-south section of Daxing’anling[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015,37(3):306-312.
[7] 廖桂香, 吴珊, 西永在, 等. 沙地区航空电磁法找浅层水和土壤盐渍化普查效果[J]. 物探与化探, 2013,37(5):899-903, 910.
[7] Liao G X, Wu S, Xi Y Z, et al. The application of airborne electromagnetic method to the search for shallow groundwater and the survey of soil salinization in the sand area[J]. Geophysical and Geochemical Exploration, 2013,37(5):899-903, 910.
[8] 丁志强, 程志平, 李飞, 等. 频率域航空电磁法视电阻率转换在岩性构造填图中的应用[J]. 桂林理工大学学报, 2013,33(1):45-49.
[8] Ding Z Q, Cheng Z P, Li F, et al. Apparent resistivity conversion application of FAEM in lithostructural mapping[J]. Journal of Guilin University of Technology, 2013,33(1):45-49.
[9] 丁志强, 李飞, 袁桂琴. 矿产普查中航空电磁异常的查证综合解释[J]. 桂林理工大学学报, 2018,38(4):726-731.
[9] Ding Z Q, Li F, Yuan G Q. Comprehensive interpretation of airborne electromagnetic anomaly verification in mineral prospecting[J]. Journal of Guilin University of Technology, 2018,38(4):726-731.
[10] 方迎尧, 王卫平, 肖刚毅, 等. 频率域航空电磁法岩性地质单元填图技术[J]. 物探与化探, 2010,34(3):308-314.
[10] Fang Y Y, Wang W P, Xiao G Y, et al. The lithologic and geological unit mapping technique based on frequency-domain aeroelectromagnetic method and its effect[J]. Geophysical and Geochemical Exploration, 2010,34(3):308-314.
[11] 周道卿, 谭捍东, 王卫平. 频率域航空电磁资料Occam反演研究[J]. 物探与化探, 2006,30(2):162-165.
[11] Zhou D Q, Tan H D, Wang W P. The Occam inversion in FAEM data processing[J]. Geophysical and Geochemical Exploration, 2006,30(2):162-165.
[12] 殷长春, 齐彦福, 刘云鹤, 等. 频率域航空电磁数据变维数贝叶斯反演研究[J]. 地球物理学报, 2014,57(9):2971-2980.
[12] Yin C C, Qi Y F, Liu Y H, et al. Trans-dimensional Bayesian inversion of frequency-domain airborne EM data[J]. Chinese Journal of Geophysics, 2014,57(9):2971-2980.
[13] Christensen N B, Tølbøll R J. A lateral model parameter correlation procedure for one-dimensional inverse modelling[J]. Geophysical Prospecting, 2009,57(5):919-929.
[14] 刘云鹤, 殷长春. 三维频率域航空电磁反演研究[J]. 地球物理学报, 2013,56(12):4278-4287.
[14] Liu Y H, Yin C C. 3D inversion for frequency-domain HEM data[J]. Chinese Journal of Geophysics, 2013,56(12):4278-4287.
[15] 谭林, 周道卿, 宁墨奂, 等. 频率域航空电磁法人机交互式二维正演研究[J]. 物探与化探, 2018,42(4):798-803.
[15] Tan L, Zhou D Q, Ning M H, et al. The human-computer interaction two dimensional forward research of the frequency domain airborne electromagnetic method[J]. Geophysical and Geochemical Exploration, 2018,42(4):798-803.
[16] Tue B, Esben A, Anders V C, et al. An efficient 2D inversion scheme for airborne frequency-domain data[J]. Geophysics, 2018,83(4):E189-E201.
[17] Nabighian M N. 勘查地球物理——电磁法, 卷一, 理论[M]. 赵经祥. 北京: 科学出版社, 1992, 195-200.
[17] Nabighian M N. Electromagnetic methods in applied geophysics, Volume 1, Theory[M]. Zhao J X. Beijing: Science Press, 1992, 195-200.
[18] 周道卿. 频率域航空电磁数据的质心深度近似反演[J]. 物探与化探, 2007,31(3):242-244,249.
[18] Zhou D Q. Inversion of FAEM data with the Centroid Depth Theory[J]. Geophysical and Geochemical Exploration, 2007,31(3):242-244,249.
[19] 孟庆敏. 频率域航空电磁法层状反演及应用研究[D]. 北京: 中国地质大学(北京), 2005.
[19] Meng Q M. Inversion and application of frequency-domain AEM data from layered earth[D]. Beijing: China University of Geosciences (Beijing), 2005.
[20] Li W B, Zeng Z F, Li J, et al. 2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data[J]. Applied Geophysics, 2016,13(1):37-47.
[21] 习建军, 崔丹丹, 张文双, 等. 磁性条件下频率域航空电磁正演计算和成像研究[J]. 地球物理学进展, 2016,31(6):2700-2706.
[21] Xi J J, Cui D D, Zhang W S, et al. Study of frequency airborne electromagnetic forward calculation and imaging under magnetic condition[J]. Progress in Geophysics, 2016,31(6):2700-2706.
[22] 袁桂琴, 孟庆敏, 廖桂香, 等. 内蒙古自治区二连浩特-东乌旗地区1:5万航空物探综合站勘查成果报告[R]. 中国地质科学院地球物理地球化学勘查研究所, 2008.
[22] Yuan G Q, Meng Q M, Liao G X, et al. Report on exploration results of 1:50000 airborne geophysical integrated station in Erlianhot-East Ujimqin Banner area, Inner Mongolia Autonomous Region[R]. Institute of Geophysical and Geochemical Exploration, CAGS, 2008.
[23] 李军峰, 高卫东, 吴珊, 等. 频率域航电测量系统抗干扰技术研究[J]. 物探化探计算技术, 2016,38(3):334-339.
[23] Li J F, Gao W D, Wu S, et al. The anti-jamming technology of the FAEM system[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016,38(3):334-339.
[24] 胥值礼, 刘还林, 丁志强, 等. 频率域航空电磁法数据调平软件设计与实现[J]. 物探化探计算技术, 2009,31(4):333-337.
[24] Xu Z L, Liu H L, Ding Z Q, et al. The design and implementation of the leveling software in the frequency-domain airborne electromagnetic method[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2009,31(4):333-337.
[25] 黄威, 贲放, 吴珊, 等. 正交多项式法在航空电磁运动噪声去除中的应用[J]. 物探与化探, 2019,43(4):892-898.
[25] Huang W, Ben F, Wu S, et al. The application of orthogonal polynomial fitting method to airborne electromagnetic motion noise removal[J]. Geophysical and Geochemical Exploration, 2019,43(4):892-898.
[26] 李小康. 基于MPI的频率域航空电磁法有限元二维正演并行计算研究[D]. 北京: 中国地质大学(北京), 2011.
[26] Li X K. A MPI based parallel calculation investigation on two dimensional finite element modelling of AEM[D]. Beijing: China University of Geosciences (Beijing), 2011.
[27] Ren X Y, Yin C C, James M, et al. 3D time-domain airborne electromagnetic inversion based on secondary field finite-volume method[J]. Geophysics, 2018,83(4):E219-E228.
doi: 10.1190/geo2017-0585.1
[1] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[2] 李展辉, 杨淼鑫, 曹学峰. 瞬变电磁法感应电压场与B场探测效果的数值计算对比分析[J]. 物探与化探, 2021, 45(1): 114-126.
[3] 郭龙凤, 陈德培, 魏长勇, 王刚. 弥河下游浅埋古河道的勘探识别[J]. 物探与化探, 2020, 44(4): 863-869.
[4] 朱怀亮, 胥博文, 刘志龙, 石峰, 辛玉齐, 曹学刚, 程国强. 大地电磁测深法在银川盆地地热资源调查评价中的应用[J]. 物探与化探, 2019, 43(4): 718-725.
[5] 许智博, 谭捍东. ZTEM二维非线性共轭梯度反演研究[J]. 物探与化探, 2019, 43(2): 393-400.
[6] 仇根根, 吕琴音, 彭炎, 裴发根. 大地电磁三维模型二维反演计算数值模拟分析[J]. 物探与化探, 2018, 42(4): 791-797.
[7] 刘波, 宋振涛, 李霄, 李茂. 芨岭岩体北部地区革命沟断裂地电结构特征[J]. 物探与化探, 2016, 40(5): 876-879.
[8] 田占峰, 毛星, 罗旭, 金胜, 叶高峰. 音频大地电磁测深法在电性结构研究中的应用——以郯庐断裂带宿迁段为例[J]. 物探与化探, 2016, 40(4): 732-736.
[9] 张小博, 钟清, 方慧, 仇根根, 李晓昌, 何梅兴, 袁永真, 张鹏辉. 对多段线MT二维反演方法的一种改进[J]. 物探与化探, 2016, 40(1): 104-110.
[10] 张倩, 王玲, 江沸菠. 电阻率层析成像的二维改进粒子群优化算法反演[J]. 物探与化探, 2015, 39(5): 1047-1052.
[11] 孔志召, 山科社, 吴勇, 艾虎, 王泽霞. 印模法在AMT数据处理中的改进与应用[J]. 物探与化探, 2015, 39(2): 416-420.
[12] 王振亮, 林天亮, 蔡永文, 鲁瑞君. CSAMT法在东岗铜、铁矿勘查中的应用[J]. 物探与化探, 2015, 39(2): 268-272.
[13] 姚大为, 朱威, 王大勇, 王刚, 张振宇. 音频大地电磁法在武山外围深部勘查中的应用[J]. 物探与化探, 2015, 39(1): 100-103.
[14] 仇根根, 张小博, 裴发根, 袁永真, 白大为, 张鹏辉. 大地电磁测深反演技术有效性对比试验[J]. 物探与化探, 2015, 39(1): 118-124.
[15] 仇根根, 张小博, 方慧, 钟清, 裴发根, 袁永真, 杜炳瑞. MT等效视电阻率法在构建电性柱结构模型中的应用[J]. 物探与化探, 2014, 38(4): 732-736.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com