Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (2): 351-358    DOI: 10.11720/wtyht.2019.1144
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
高密度电阻率法比值参数基于阻尼最小二乘反演
刘成功1, 金胜1,2, 魏文博1,2, 景建恩1, 叶高峰1, 尹曜田1
1. 中国地质大学(北京) 地球物理与信息技术学院,北京 100083
2. 地下信息探测技术与仪器教育部重点实验室,北京 100083
The least squares inversion of high-density resistivity method ratio parameter based on smooth constraint
Cheng-Gong LIU1, Sheng JIN1,2, Wen-Bo WEI1,2, Jian-En JING1, Gao-Feng YE1, Yao-Tian YIN1
1. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
2. Key Laboratory of Underground Information Detection Technology and Instruments, Ministry of Education, Beijing 100083,China
全文: PDF(2190 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

三电位电极系中装置的探测精度和数据处理方法的研究一直是地球物理工作者研究的一个热点,同时也存在很大的争议。利用正演模拟结果讨论了岩溶地区几种可能存在的地质条件下三种装置的探测精度,发现β装置和γ装置的探测效果明显优于α装置;然后利用正演计算得到的数据合成比值参数(T),对合成数据T进行最小二乘反演,发现T值反演结果和视电阻率反演结果一致,并在噪声影响较大的区域,T值反演结果优于T值等值线图,可作为判断异常体特征的一个依据,也可验证视电阻率的反演结果,弥补由于噪声对某种单一装置探测效果的影响。以义马某地的水文地质勘察为例,T值最小二乘反演结果表明,在含水低阻区域T值也呈现小值异常,且显示的异常体边界准确,结构特征明显。利用T值反演对数据处理具有重要的意义,应予以重视。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘成功
金胜
魏文博
景建恩
叶高峰
尹曜田
关键词 三电位电极系正演最小二乘反演比值参数反演水文地质勘察    
Abstract

The detection accuracy of the array and the study of data processing methods about the three-potential observation system always constitute a hot spot for geophysicists, and there are also many controversies. In this paper, forward modeling results are used to discuss the detecting accuracy of three devices under several possible geological conditions in karst area. It is found that β array and γ array are significantly more precise than wenner α array; then, the ratio parameter (T) is composed of forward’s result. With least-squares inversion on the data of T, the authors found that the result of T’s least-squares inversion is consistent with the inverse result of apparent resistivity, and the result of inversion result is better than the T contour map in an area where the noise is large. For the result of the T’s least-squares inversion, it can be used as a basis for judging the anomalous body characteristics and the inverse result of apparent resistivity, and it can also be used to make up the effect of noise on a single device. Taking the hydrogeological survey of a certain place in Yima as an example, the authors found that the result of the T’ least-squares inversion in the low-water-resistance region is small, the abnormal bodies’ boundaries are accurate, and the structural features are obvious. It is shown that the result of the T least-squares inversion is very useful for data processing and interpretation, and therefore researchers should pay attention to it in future.

Key wordsthree-potential electrode system    forward modeling    least square inversion    ratio parameter’s inversion    hydrogeological survey
收稿日期: 2018-04-03      出版日期: 2019-04-10
:  P631  
基金资助:国家重点研发计划课题“华南岩石圈三维结构与深部过程”(2016YFC0600201)
作者简介: 刘成功(1992-),男,中国地质大学(北京)硕士生,主要研究方向为电法勘探和电磁探测技术。
引用本文:   
刘成功, 金胜, 魏文博, 景建恩, 叶高峰, 尹曜田. 高密度电阻率法比值参数基于阻尼最小二乘反演[J]. 物探与化探, 2019, 43(2): 351-358.
Cheng-Gong LIU, Sheng JIN, Wen-Bo WEI, Jian-En JING, Gao-Feng YE, Yao-Tian YIN. The least squares inversion of high-density resistivity method ratio parameter based on smooth constraint. Geophysical and Geochemical Exploration, 2019, 43(2): 351-358.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1144      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I2/351
Fig.1  温纳α、β、γ装置电极排列示意
Fig.2  低阻模型剖面及参数断面
a—模型断面;b—α装置电阻率断面;c—β装置电阻率断面;d—γ装置电阻率断面;e—比值参数(T)拟断面;f—比值参数(T)反演断面
Fig.3  高阻模型剖面及参数断面
a—模型断面; b—α装置电阻率断面; c—β装置电阻率断面;d—γ装置电阻率断面;e—比值参数(T)拟断面;f—比值参数(T)反演断面
Fig.4  复杂模型剖面及参数断面
a—模型断面;b—α装置电阻率断面;c—β装置电阻率断面;d—γ装置电阻率断面;e—比值参数(T)拟断面; f—比值参数(T)反演断面
Fig.5  实测剖面参数断面
a—α装置电阻率断面;b—β装置电阻率断面;c—γ装置电阻率断面图;d—比值参数(T)拟断面; e—比值参数(T)反演断面
[1] 李金铭, 罗延钟 . 电法勘探新进展[M]. 北京: 地质出版社, 1996.
[1] Li J M, Luo Y Z . New progress in electrical exploration[M]. Beijing:Geological publishing house, 1996.
[2] 雷宛, 肖宏跃 . 地电场与电法勘探[M]. 北京: 地质出版社, 2008.
[2] Lei W, Xiao H Y . Geoelectric field and electric method exploration[M]. Beijing:Geological publishing house, 2008.
[3] 严加永, 孟贵祥, 吕庆田 . 高密度电法的进展与展望[J]. 物探与化探, 2012,36(4):576-584.
doi: 10.1109/IAS.1994.345472
[3] Yan J Y, Meng G X, Luy Q T . The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical and Geochemical Exploration, 2012,36(4):576-584.
[4] 董浩斌, 王传雷 . 高密度电法的发展与应用[J]. 地学前缘, 2003,10(1):171-176.
doi: 10.3321/j.issn:1005-2321.2003.01.020
[4] Dong H B, Wang C L . Development and application of high density electrical method[J][J]. Geoscience Frontiers, 2003,10(1):171-176.
[5] 甘萍, 薛建球, 侯利朋 , 等. 高密度电法在水文地质和工程地质勘查中的应用[J]. 青海大学学报, 2017,35(3):46-51.
[5] Gan P, Xue J Q, Hou L P , et al. Application of high density electrical method in hydrogeology and engineering geological exploration[J]. Journal of Qinghai University, 2017,35(3):46-51.
[6] 杨进, 刘庆成, 程业勋 , 等. 水环境地球物理方法的应用综述[J]. 地质科技情报, 2000,19(2):107-110.
doi: 10.3969/j.issn.1000-7849.2000.02.026
[6] Yang J, Liu Q C, Cheng Y X , et al. A review of the application of geophysical methods in water environment[J]. Geological Science and Technology Information, 2000,19(2):107-110.
[7] 张峰 . 高密度电法在工程地质勘察中的应用[J].陕西水利, 2015(2):155-156.
[7] Zhang F . Application of high-density electrical method in engineering geological survey[J]. Shaanxi Water Conservancy, 2015(2):155-156.
[8] 贾同福, 尹志勇, 汤洪志 . 高密度电阻率法在岩溶探测中的应用[J]. 东华理工大学学报, 2011,34(1):94-96.
doi: 10.3969/j.issn.1674-3504.2011.01.016
[8] Jia T F, Yin Z Y, Tang H Z . Application of high-density resistivity method in karst exploration[J]. Journal of East China Institute of Technology, 2011,34(1):94-96.
[9] 王兴泰 . 高密度电阻率法及其应用技术研究[J]. 长春地质学院学报, 1991,21(3):341-348.
[9] Wang X T . Research on high-density resistivity method and its application technology[J]. Journal of Changchun Institute of Geology, 1991,21(3):341-348.
[10] 肖宏跃, 雷宛, 雷行健 . 高密度电阻率法中几种装置实测效果比较[J].工程勘察, 2007(9):65-69.
[10] Xiao H Y, Lei W, Lei X J . Comparison of the measured results of several devices in high-density resistivity method[J]. Engineering Investigation, 2007 ( 9):65-69.
[11] 吕玉增, 阮百尧 . 高密度电法工作中的几个问题研究[J]. 工程地球物理学报, 2005,2(4):264-269.
doi: 10.3969/j.issn.1672-7940.2005.04.004
[11] Luy Y Z, Ruan B R . Study on several problems in the work of high-density electrical method[J]. Journal of Engineering Geophysics. 2005,2(4):264-269.
[12] 罗延钟, 王传雷, 董浩斌 . 高密度电阻率法的电极装置选择[J]. 地质与勘探, 2005,41(s):174-178.
[12] Luo Y Z, Wang C L, Dong H B . Electrode device selection by high-density resistivity method[J]. Geology and Prospecting, 2005,41(s):174-178.
[13] Loke M H. Electrical imaging surveys for environmental and engineering studies [C]//www.geoelectrical.com, 1999.
[14] 郑冰, 李柳德 . 高密度电法不同装置的探测效果对比[J]. 工程地球物理学报, 2015,12(1):33-39.
doi: 10.3969/j.issn.1672-7940.2015.01.007
[14] Zheng B, Li L D . Comparison of detection effects of different devices with high-density electrical method[J]. Journal of Engineering Geophysics, 2015,12(1):33-39.
[15] 林昌洪, 谭捍东, 佟拓 . 倾子资料三维共轭梯度反演研究[J]. 地球物理学报, 2011,54(4):1106-1113.
doi: 10.3969/j.issn.0001-5733.2011.04.026
[15] Lin C H, Tan H D, Tong T . Study on three-dimensional conjugate gradient inversion of dumper data[J]. Chinese Journal of Geophysics, 2011,54(4):1106-1113.
[16] 胡文宝, 苏朱刘, 陈清礼 , 等. 倾子资料的特征及应用[J]. 石油地球物理勘探, 1997,32(2):202-212.
[16] Hu W B, Su Z L, Chen Q L , et al. Characteristics and application of dumping data[J]. Petroleum Geophysical Exploration, 1997,32(2):202-212.
[17] 江玉乐, 康万福, 张楠 , 等. 高密度电法在岩溶勘察中的应用[J]. 成都理工大学学报:自然科学版, 2007,34(4):452-455.
doi: 10.3969/j.issn.1671-9727.2007.04.013
[17] Jiang Y L, Kang W F, Zhang N , et al. Application of high-density electrical method in karst exploration[J]. Journal of Chengdu University of Technology:Natural Science Edition, 2007,34(4):452-455.
[18] 蔡斌 . 高密度电法模拟研究与工程应用[D]. 吉林:吉林大学, 2011.
[18] Cai B . High-density electrical simulation research and engineering application[D]. Jilin: Jilin University, 2011.
[19] 汤洪志, 易峰, 何门贵 , 等. WGMD -1 型高密度电阻率测量系统比值参数软件的开发与应用[J]. 华东地质学院学报, 2000,23(3):242-247.
doi: 10.3969/j.issn.1674-3504.2000.03.012
[19] Tang H Z, Yi F, He M G , et al. Development and application of ratio parameter software for WGMD-1 high-density resistivity measurement system[J]. Journal of East China Geological Institute, 2000,23(3):242-247.
[20] 杨润海, 赵晋明, 王彬 , 等. 比值参数在高密度电法中的应用[J]. 地震研究, 2003,26(2):197-200.
doi: 10.3969/j.issn.1000-0666.2003.02.014
[20] Yang R H, Zhao J M, Wang B , et al. Application of ratio parameter in high-density electrical method[J]. Journal of Seismological Research, 2003,26(2):197-200.
[21] 郭秀军, 王兴泰 . 用高密度电阻率法进行空洞探测的几个问题[J]. 物探与化探, 2001,25(4):306-315.
doi: 10.3969/j.issn.1000-8918.2001.04.011
[21] Guo X J, Wang X T . Some problems in the application of high density resistivity method to cavity exploration[J]. Geophysical and Geochemical Exploration, 2001,25(4):306-315.
[22] 李金铭 . 地电场与电法勘探[M]. 北京: 地质出版社, 2005.
[22] Li J M . Geoelectric field and electrical method exploration[M]. Beijing: Geological publishing house, 2005.
[23] 李美梅 . 高密度电阻率法正反演研究及其应用[D].北京:中国地质大学(北京), 2014.
[23] Li M M . Research on the forward and inversion of high-density resistivity method and its application[D]. Beijing: China University of Geosciences(Beijing), 2014.
[24] 王恩德, 门业凯, 张忠杰 , 等. 基于高密度电阻率法的铁矿山采空区数值模拟[J]. 东北大学学报:自然科学版, 2013,34(7):1022-1026.
[24] Wang E D, Men Y K, Zhang Z J , et al. Numerical simulation of goaf in iron mine based on high-density resistivity method[J]. Journal of Northeastern University:Natural Science, 2013,34(7):1022-1026.
[25] Feng D S, Dai Q W, Xiao B . Contrast between 2D inversion and 3D inversion based on 2D high-density resistivity data[J]. Transactions of Nonferrous Metals Society of China, 2014,24:224-232.
doi: 10.1016/S1003-6326(14)63051-X
[26] 黄真萍, 胡晓娟, 孙艳坤 . 三维高密度电法正反演模拟阻尼系数最优设置研究[J]. 路基工程, 2014,( 1):5-10.
doi: 10.13379/j.issn.1003-8825.2014.01.02
[26] Huang Z P, Hu X J, Sun Y K . Study on optimal setting of simulated damping coefficient for forward and inverse of 3D high-density electrical method[J]. Subgrade Engineering, 2014,( 1):5-10.
[1] 孙思源, 余学中, 谢汝宽, 何怡原, 单希鹏, 李诗珺. 航空电磁技术在冻土调查中的探测能力分析[J]. 物探与化探, 2022, 46(1): 104-113.
[2] 王博, 郭良辉, 崔亚彤, 王祥. 三维Tesseroid网格模型重力异常正演方法及并行算法[J]. 物探与化探, 2021, 45(6): 1597-1605.
[3] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[4] 智庆全, 武军杰, 王兴春, 孙怀凤, 杨毅, 张杰, 邓晓红, 陈晓东, 杜利明. 在瞬变电磁三维正演中的应用[J]. 物探与化探, 2021, 45(4): 1037-1042.
[5] 王光文, 王海燕, 李洪强, 李文辉, 庞永香. 地震正演技术在深反射地震剖面探测中的应用[J]. 物探与化探, 2021, 45(4): 970-980.
[6] 郭楚枫, 张世晖, 刘天佑. 三维磁场有限元—无限元耦合数值模拟[J]. 物探与化探, 2021, 45(3): 726-736.
[7] 吴洋, 严家斌. 基于压电效应的大地极化声子模拟研究[J]. 物探与化探, 2021, 45(3): 742-749.
[8] 周武, 罗威, 蓝星, 简兴祥. 大地电磁交错采样有限差分二维正反演研究[J]. 物探与化探, 2021, 45(2): 458-465.
[9] 顾观文, 武晔, 石砚斌. 基于矢量有限元的大地电磁快速三维正演研究[J]. 物探与化探, 2020, 44(6): 1387-1398.
[10] 李靖翔, 赵明, 赖皓, 熊双成, 唐阳. 地下电缆的探地雷达图像特征与识别技术[J]. 物探与化探, 2020, 44(6): 1482-1489.
[11] 聂伟东, 李雪英, 万乔升, 王福霖, 何谞超. 基于affine类时频分析的旋回性薄互层时频特征影响因素分析[J]. 物探与化探, 2020, 44(4): 763-769.
[12] 徐磊, 汪思源, 张建清, 李文忠, 李鹏. 近垂直反射正演模拟及其地下工程应用[J]. 物探与化探, 2020, 44(3): 635-642.
[13] 程志国, 胡婷婷, 魏凌云, 郭海洋. 准噶尔南缘山前二维多波勘探近地表影响因素分析[J]. 物探与化探, 2019, 43(4): 866-871.
[14] 孙大利, 李貅, 齐彦福, 孙乃泉, 李文忠, 周建美, 孙卫民. 基于非结构网格三维有限元堤坝隐患时移特征分析[J]. 物探与化探, 2019, 43(4): 804-814.
[15] 熊业刚, 罗铮, 张启全, 王海峰, 李祥, 朱波, 王振强. 逆掩断裂带正演分析与解释——以英雄岭地区为例[J]. 物探与化探, 2019, 43(3): 551-557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com