Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (2): 266-272    DOI: 10.11720/wtyht.2019.1239
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
焦石坝地区页岩各向异性及其影响的分析研究
李文成, 扶喆一
中石化勘探分公司,四川 成都 610041
The anisotropic characteristics and impact of organic-rich shale:A Jiaoshiba demonstration
Wen-Cheng LI, Zhe-Yi FU
Exploration Branch Company of SINOPEC,Chengdu 610041,China
全文: PDF(4526 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

黑色富含有机质页岩由于沉积方式的特殊性,一般具有较强的各向异性。但现有大部分研究是基于各向同性理论开展页岩储层预测工作,这与页岩的实际地质特点不符。文中联合利用实验室岩石力学测试数据以及各向异性参数经验公式计算焦石坝地区页岩的各向异性参数,并进一步探讨了各向异性对页岩岩石速度、储层AVO响应特征以及岩石力学参数计算的影响。结果表明,各向异性对页岩速度、脆性指数预测结果影响较大,在地层倾角较大时进行速度分析及页岩可压性预测时应考虑各向异性参数的影响;同时,AVO正演结果表明地震反射入射角小于40°时,各向异性算法与各向同性算法计算的页岩AVO响应差异较小,利用各向同性叠前反演方法进行页岩储层预测具有可行性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李文成
扶喆一
关键词 页岩各向异性岩石速度AVO响应脆性指数    
Abstract

Because of the particular depositional mode,black organic matter-rich shales are generally characterized by strong velocity anisotropy;however,most researches on shale are on the basis of isotropic theory,which obviously ignores the geological characteristics of shale.In this paper,anisotropic parameters of shale are calculated by combining rock mechanical measurements in the laboratory with the empirical methods from the literature.On the one hand,the parameters are used to investigate their effects on the calculation of velocity versus bedding direction and rock mechanical parameters,and the result shows that the anisotropic characteristics of shale cannot be neglected when the dip angle of the strata is large.On the other hand,little difference between AVO responses of anisotropic and isotropic methods when the incidence angle is less than 40° indicates the feasibility of isotropic pre-stack seismic inversion in predicting shale "sweet spot".

Key wordsshale    anisotropy    rock velocity    AVO response    brittleness index
收稿日期: 2018-06-19      出版日期: 2019-04-10
:  P631.4  
基金资助:国家科技重大专项“页岩气区带目标评价与勘探技术”(2017ZX05036);中石化科技部基础研究项目“川渝地区海相优质页岩气层形成主控因素及预测技术”(P15074)
作者简介: 李文成(1985-),男,工程师,2011年于中国石油大学(北京)获得地球探测与信息技术专业硕士学位,现主要从事岩石物理分析、叠前地震反演、页岩气“甜点”预测方面的研究工作。Email: idiotheque@qq.com
引用本文:   
李文成, 扶喆一. 焦石坝地区页岩各向异性及其影响的分析研究[J]. 物探与化探, 2019, 43(2): 266-272.
Wen-Cheng LI, Zhe-Yi FU. The anisotropic characteristics and impact of organic-rich shale:A Jiaoshiba demonstration. Geophysical and Geochemical Exploration, 2019, 43(2): 266-272.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1239      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I2/266
Fig.1  研究区区域位置
Fig.2  JY1井页岩岩心薄片(a)及地层微电阻率扫描成像结果(b)
Fig.3  各向异性参数ε(a)、γ(b)与黏土含量交会
计算方法 ε γ δ
焦石坝三轴压缩实验 0.209 0.191 0.067
Deng经验公式 0.215 0.209 0.069
Sone经验公式 0.245 0.274 0.078
Syaers经验公式 0.293 0.515 0.006
Table 1  不同各向异性参数计算方法计算结果
Fig.4  归一化后的纵波速度(a)、横波速度(b)随地层角度变化关系
序号 层段 纵波速度/(m·s-1) 横波速度/(m·s-1) 密度/(g·cm-3) ε γ δ
龙一段页岩 4036 2373 2.60 0.234 0.228 0.075
龙一段二亚段页岩 4220 2516 2.63 0.237 0.231 0.076
龙一段一亚段页岩 4000 2344 2.53 0.174 0.169 0.056
涧草沟组灰岩 6007 3101 2.72 0 0 0
Table 2  不同小层速度、密度及各向异性参数
Fig.5  各向同性与各向异性方法计算AVA曲线对比
Fig.6  密度与TOC交会图(a)及各向同性反演方法得到的TOC反演剖面(b)
Fig.7  视脆性指数(a)与水平方向脆性指数(b)平面图
[1] 郭旭升, 李宇平, 刘若冰 , 等. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J]. 天然气工业, 2014,34(6):9-16.
doi: 10.3787/j.issn.1000-0976.2014.06.002
[1] Guo X S, Li Y P, Liu R B , et al. Characteristics and controlling factors of micro-pore structures of Longmaxi Shale Play in the Jiaoshiba area,Sichuan Basin[J]. Natural Gas Industry, 2014,34(6):9-16.
[2] Vernik L, Liu X . Velocity anisotropy in shales:A petrophyscial study[J]. Geophysics, 1997,62(2):521-532.
doi: 10.1190/1.1444162
[3] Vernik L , Milovac J . Rock physics of organic shales[J].The Leading Edge, 2011, Special Section:Shales:318-323.
[4] Sayer C . The effect of kerogen on the elastic anisotropy of organic-rich shales[J]. Geophysics, 2013,78(2):65-74.
doi: 10.1190/GEO2012-0309.1
[5] Sayers C . Seismic anisotropy of shales[J]. Geophysical Prospecting, 2005,63:667-676.
[6] 郭彤楼, 刘若冰 . 复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东部盆缘JY1井为例[J]. 天然气地球科学, 2013,24(4):643-650.
[6] Guo T L, Liu R B . Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage:Taking Longmaxi Formation in well JY1 as an example[J]. Natural Gas Geoscience, 2013,24(4):613-650.
[7] Thomsen L . Weak elastic anisotropy[J]. Geophysics, 1986,51(10):1954-66.
doi: 10.1190/1.1442051
[8] 唐杰 . 各向异性岩石的静态模量与动态模量实验研究[J]. 岩石力学与工程学报, 2014,33(s1):3185-3191.
[8] Tang J . Experimental study of static and dynamic moduli for anisotropic rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2014,33(s1):3785-3191.
[9] Luan X Y, Di B R, Wei J X, et al. Laboratory measurements of brittleness anisotropy in synthetic shale with different cementation [C]//Expanded Abstracts of the 84 th Annual SEG Meeting,Society of Exploration Geophysicists , 2014: 26-31.
[10] Ryan-Grigor S . Empirical relationships between transverse isotropy parameters and VP/VS: Implications for AVO[J]. Geophysics, 1997,62(5):1359-1364.
doi: 10.1190/1.1444239
[11] Li Y Y . An empirical method for estimation of anisotropic parameters in clastic rocks[J]. The Leading Edge, 2006,25:706-711.
doi: 10.1190/1.2210052
[12] Hiroki S . Mechanical properties of shale gas reservoir rocks and its relation to the insi-tu stress variation observed in shale gas reservoir[D]. Stanford University, 2012: 38-44.
[13] Sayers C . The effect of anisotropy on the Young’s moduli and Poisson’s ratios of shales[J]. Geophysical Prospecting, 2013,61:416-426.
doi: 10.1111/j.1365-2478.2012.01130.x
[14] Deng J X, Shen H, Xu Z H , et al. Dynamic elastic properties of the Wufeng-Longmaxi formation shale in the southeast margin of the Sichuan Basin[J]. Journal Geophysics Engineering, 2014,11:1-11.
[15] 陈颙, 黄庭芳 . 岩石物理学[M]. 北京: 北京大学出版社, 2001: 35-38.
[15] Chen Y, Huang T F. Rock Phycis[M]. Beijing: Peking University Press, 2001: 35-38.
[16] 陈祖庆 . 海相页岩TOC地震定量预测技术及应用——以四川盆地焦石坝地区为例[J]. 天然气工业, 2014,34(6):24-29.
doi: 10.3787/j.issn.1000-0976.2014.06.004
[16] Chen Z Q . Quantitative seismic prediction technique of marine shale TOC and its application:A case from the Longmaxi Shale Play in the Jiaoshiba area,SichuanBasin[J]. Natural Gas Industry, 2014,34(6):24-29.
[17] Sena A, Castillo G , Chesser K . Seismic reservoir characterization in resource shale plays:Stress analysis and sweet spot discrimination[J].The Leading Edge, 2011, Special Section:Practical Applications of Anisotropy: 758-764.
doi: 10.1190/1.3609090
[18] Wright J . The effects of transverse isotropy on reflection amplitude versus offset[J]. Geophsics, 1987,52(4):564-567.
doi: 10.1190/1.1442325
[19] Thomsen L. Weak anisotropic reflections,Offset Dependent Reflectivity:Theory and Practice of AVO analysis [C]//Expanded Abstracts of the 73 rd Annual SEG Meeting,Society of Exploration Geophysicists , 2013.
[20] Ruger A. Reflection coefficients and azimuthal AVO Analysis in anisotropic media [C]//SEG Geophysical Monograph Series Number 10,Society Exploration Geophysicists, 2002.
[21] Rickman R, Mullen M, Petre E. A practical use of shale petrophysics for stimulation design optimization:All shale plays are not clones of the Barnett Shale [C]//Denver:SPE Annual Technical Conference and Exhibition, 2008.
[22] Thomsen L. On the use of isotropic parameters λ,E,ν,K to understand anisotropic shale behavior [C]//Expanded Abstracts of the 83 rd Annual SEG Meeting,Society of Exploration Geophysicists , 2013: 320-324.
[1] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[2] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[3] 李红星, 谈顺佳, 姚振岸, 黄光南, 徐培渊, 周杰, 范利飞. 基于地震环境噪声的油页岩勘探[J]. 物探与化探, 2021, 45(4): 898-905.
[4] 杨松林, 李岩, 刘亚轩, 杨雪, 蒋文博. 乌尔逊凹陷泥页岩演化特征及潜力区预测[J]. 物探与化探, 2021, 45(4): 906-912.
[5] 欧居刚, 王小兰, 杨晓, 邓小江, 黄诚, 李文佳. 水平井地震导向技术探索与应用——以四川盆地复杂地区页岩气井为例[J]. 物探与化探, 2021, 45(3): 551-559.
[6] 刘昊娟. 地应力地震预测及其在南川页岩气开发中的应用[J]. 物探与化探, 2021, 45(3): 560-568.
[7] 张勇, 马晓东, 李彦婧, 蔡景顺. 深度学习在南川页岩气含气量预测中的应用[J]. 物探与化探, 2021, 45(3): 569-575.
[8] 孙永壮, 李键, 秦德文, 刘庆文. 三维边缘保持滤波方法在海上地震数据噪声压制中的应用研究——以东海某凹陷为例[J]. 物探与化探, 2021, 45(3): 692-701.
[9] 刘伟男, 张超谟, 朱林奇, 胡松, 孔政, 邓瑞. 页岩气水平井TOC测井评价新方法[J]. 物探与化探, 2021, 45(2): 423-431.
[10] 陈志刚, 马文杰, 赵宏忠, 许凤, 崔全章, 马辉, 孙星. 利用曲率类属性预测储层裂缝的流程及应用实例[J]. 物探与化探, 2020, 44(5): 1201-1207.
[11] 李帝铨, 汪振兴, 胡艳芳, 王涵, 苏煜堤. 广域电磁法在武陵山区页岩气勘探中的探索应用——以黔北桐梓地区为例[J]. 物探与化探, 2020, 44(5): 991-998.
[12] 田红军, 尹文斌, 刘光迪, 蒋永芳, 游文兵. 广域电磁法在低阻覆盖区的应用与评价——以河南中牟为例[J]. 物探与化探, 2020, 44(5): 1025-1030.
[13] 周锦钟, 张金海, 牛全兵, 张惠瑜, 王海峰, 朱波, 李丽, 尹思, 王娜. 柴达木盆地尖顶山地区低频可控震源“两宽一高”地震资料处理关键技术应用研究[J]. 物探与化探, 2020, 44(2): 313-320.
[14] 王超, 宋维琪, 林彧涵, 张云银, 高秋菊, 魏欣伟. 基于叠前反演的地应力预测方法应用[J]. 物探与化探, 2020, 44(1): 141-148.
[15] 张红文, 刘喜恒, 周兴海, 李六五, 杜喜善, 王成泉. 全方位偏移成像技术在南马庄潜山构造带的应用[J]. 物探与化探, 2020, 44(1): 25-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com