Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (5): 1281-1287    DOI: 10.11720/wtyht.2021.1368
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
高密度三维区沙四段灰岩有利储层地震预测
刘海宁1,2(), 韩宏伟1, 魏文1, 张云银1, 赵景蒲3
1.中国石化胜利油田分公司 物探研究院,山东 东营 257022
2.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
3.东营市自然资源和规划局,山东 东营 257000
Seismic prediction of favorable limestone reservoirs in the fourth member of Shahejie Formation in YD high density 3D area
LIU Hai-Ning1,2(), HAN Hong-Wei1, WEI Wen1, ZHANG Yun-Yin1, ZHAO Jing-Pu3
1. Geophysical Research Institute of Sinopec Shengli Oilfield,Dongying 257022,China
2. School of Geoscience,China University of Petroleum(East China),Qingdao 266580,China
3. Dongying Natural Resources and Planning Bureau,Dongying 257000,China
全文: PDF(4686 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

YD断裂带油气富集,新近系岩性体勘探空间大,但是勘探程度较低,制约勘探效率的主要原因是储层非均质性强,分布规律复杂,同时受地震资料及常规地震预测技术的限制,岩性体有利储层地震预测难度大。基于YD地区高密度三维方位地震资料,开展了沙四段灰岩有利储层地震预测研究工作,首先利用方位地震属性的差异性,预测储层裂缝分布;然后利用基于各向异性参数反演的储层预测技术,描述储层的各向异性特征;最后联合两种地震预测技术结果,以储层裂缝分布预测为主,以储层各向异性特征作约束,综合描述研究区沙四段灰岩储层裂缝发育程度,提高了沙四段灰岩有利储层地震预测精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘海宁
韩宏伟
魏文
张云银
赵景蒲
关键词 高密度三维有利储层地震预测YD断裂带    
Abstract

Yidong fault zone is rich in oil and gas,and the exploration space of the tertiary lithology body is large,but the exploration degree is low.The main reason restricting the exploration efficiency is that the reservoir heterogeneity is strong and the distribution rule is complex.At the same time,due to the limitation of seismic data and conventional seismic prediction technology,the favorable reservoir seismic prediction of lithologic body is difficult.Based on the high density three-dimensional azimuth seismic data of YD area,the authors carried out the research on the favorable reservoir seismic prediction of the fourth member of Shahejie Formation.Firstly,the difference of azimuth seismic properties was used to predict the distribution of fractures in the reservoir.Then the anisotropic reservoir prediction technique based on anisotropic parameter inversion was used to describe the anisotropic characteristics of the reservoir.Finally,combined with the results of two kinds of seismic prediction techniques,with the fracture distribution as the main predicted object and the reservoir anisotropy characteristic as the restricted condition,the authors described the fracture development degree of the limestone reservoir in the fourth member of Shahejie Formation comprehensively and improved the prediction accuracy of the favorable limestone reservoir in the fourth member of Shahejie Formation.

Key wordshigh density 3D    favorable reservoir    seismic prediction    YD fault zone
收稿日期: 2020-07-21      修回日期: 2021-05-12      出版日期: 2021-10-20
ZTFLH:  P631.4  
基金资助:中国石化股份公司重点攻关项目“全节点地震解释关键技术研究”(P21061-2)
作者简介: 刘海宁(1986-),男,副研究员,博士在读,主要从事油气地震地质综合研究工作。Email: liuhaining632.slyt@sinopec.com
引用本文:   
刘海宁, 韩宏伟, 魏文, 张云银, 赵景蒲. 高密度三维区沙四段灰岩有利储层地震预测[J]. 物探与化探, 2021, 45(5): 1281-1287.
LIU Hai-Ning, HAN Hong-Wei, WEI Wen, ZHANG Yun-Yin, ZHAO Jing-Pu. Seismic prediction of favorable limestone reservoirs in the fourth member of Shahejie Formation in YD high density 3D area. Geophysical and Geochemical Exploration, 2021, 45(5): 1281-1287.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1368      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I5/1281
Fig.1  不同岩性储层各向异性正演模拟
Fig.2  含裂缝储层顶、底面各向异性特征
a—方位道集;b—方位椭圆振幅
Fig.3  YD301井目的层段各向异性特征正演
a—YD301井各向异性正演模拟结果;b—YD301井目的层3612.95 m处方位各向异性特征分析
Fig.4  YD301井区灰岩储层裂缝密度及方向预测
a—储层裂缝密度;b—储层裂缝方向
Fig.5  YD301井区灰岩储层各向异性参数反演结果
Fig.6  YD301井区沙四段灰岩有利储层预测结果
[1] 刘振峰, 曲寿利, 孙建国, 等. 地震裂缝预测技术研究进展[J]. 石油物探, 2012, 51(2):191-198.
[1] Liu Z F, Qu S L, Sun J G, et al. Progress of seismic fracture characterization technology[J]. Geophysical Prospecting for Petroleum, 2012, 51(2):191-198.
[2] 党青宁, 崔永福, 陈猛, 等. OVT域叠前裂缝预测技术——以塔里木盆地塔中ZG地区奥陶系碳酸盐岩为例[J]. 物探与化探, 2016, 40(2):398-404.
[2] Dang Q N, Cui Y F, Chen M, et al. Fracture detection with prestack seismic data in OVT domain:A case study of the Ordovician carbonate reservoir in ZG area of Tazhong district in Tarim Basin[J]. Geophysical and Geochemical Exploration, 2016, 40(2):398-404.
[3] 刘成斋. 胜利探区地震采集技术发展历程回顾与启示[J]. 石油与天然气地质, 2008, 29(3):397-404, 396.
[3] Liu C Z. Review and enlightenment of seismic acquisition technology development in Shengli exploration area[J]. Oil & Gas Geology, 2008, 29(3):397-404,396.
[4] 吕公河, 张光德, 尚应军, 等. 胜利油田高精度三维地震采集技术实践与认识[J]. 石油物探, 2010, 49(6):562-572.
[4] Lyu G H, Zhang G D, Shang Y J, et al. Research and application of high-precision 3D seismic data acquisition technology in Shengli Oilfield[J]. Geophysical Prospecting for Petroleum, 2010, 49(6):562-572.
[5] 尚新民, 芮拥军, 石林光, 等. 胜利油田高密度地震探索与实践[J]. 地球物理学进展, 2018, 33(4):1545-1553.
[5] Shang X M, Rui Y J, Shi L G, et al. Exploration and practice of high-density seismic survey in Shengli Oilfield[J]. Progress in Geophysics, 2018, 33(4):1545-1553.
[6] 周锦钟, 张金海, 牛全兵, 等. 柴达木盆地尖顶山地区低频可控震源“两宽一高”地震资料处理关键技术应用研究[J]. 物探与化探, 2020, 44(2):313-320.
[6] Zhou J Z, Zhang J H, Niu Q B, et al. The key technique application research on low frequency vibrator “two-wide and one high” seismic data processing in Jiandingshan area of Qaidam Basin[J]. Geophysical and Geochemical Exploration, 2020, 44(2):313-320.
[7] 叶树刚. 全数字高密度三维地震勘探技术在小断层精细勘查中的应用研究[J]. 煤炭技术, 2017, 36(2):102-104.
[7] Ye S G. Study on application of all-digital high density 3D seismic exploration in fine exploration of small faults[J]. Coal Technology, 2017, 36(2):102-104.
[8] 白旭明, 叶秋焱, 袁胜辉, 等. 实现高密度宽方位三维地震采集的垂直观测法[J]. 物探与化探, 2014, 38(4):769-773.
[8] Bai X M, Ye Q Y, Yuan S H, et al. Vertical observation method for implementation of width azimuth and high density 3D collection[J]. Geophysical and Geochemical Exploration, 2014, 38(4):769-773.
[9] 张红文, 刘喜恒, 周兴海, 等. 全方位偏移成像技术在南马庄潜山构造带的应用[J]. 物探与化探, 2020, 44(1):25-33.
[9] Zhang H W, Liu X H, Zhou X H, et al. The application of full azimuth migration imagine technology to Nanmazhuang buried hill tectonic belt[J]. Geophysical and Geochemical Exploration, 2020, 44(1):25-33.
[10] 马光克, 李雷, 刘巍, 等. 高密度地震勘探技术在莺歌海盆地M气田岩性勘探中的应用[J]. 石油物探, 2019, 58(4):591-599.
[10] Ma G K, Li L, Liu W, et al. Application of high-density seismic acquisition technology for lithological exploration of M gas field in the Yinggehai Basin[J]. Geophysical Prospecting for Petroleum, 2019, 58(4):591-599.
[11] 李雷涛, 肖秋红, 肖伟. 优化的方位各向异性裂缝预测方法及应用[J]. 断块油气田, 2016, 23(4):455-459.
[11] Li L T, Xiao Q H, Xiao W. An optimized method of fracture prediction based on P-wave anisotropy and its application[J]. Fault-Block Oil & Gas Field, 2016, 23(4):455-459.
[12] 周连敏. 倾角方位属性在曲流河河道砂体预测中的应用[J]. 断块油气田, 2017, 24(4):471-473.
[12] Zhou L M. Application of DipAzi attribute to predicting channel sandstone of meandering river[J]. Fault-Block Oil & Gas Field, 2017, 24(4):471-473.
[13] 韩霄. 邵家洼陷沙四段碳酸盐岩储层特征研究[D]. 青岛:中国石油大学(华东), 2011.
[13] Han X. Carbonate reservoir characteristics of the fourth member of Shahejie formation in Shaojia Sag[D]. Qingdao:China University of Petroleum(East China), 2011.
[14] 杨勇强. 济阳坳陷湖相碳酸盐岩优质储层成因机理[D]. 青岛:中国石油大学(华东), 2015.
[14] Yang Y Q. The research on genesis mechanism of high quality lacustrine carbonate reservoir in Jiyang Depression[D]. Qingdao:China University of Petroleum (East China), 2015.
[15] 刘雅利, 刘鹏, 伊伟. 渤南洼陷沙四上亚段沉积相及有利储集层分布[J]. 新疆石油地质, 2014, 35(1):39-44.
[15] Liu Y L, Liu P, Yi W. Depositional facies and favorable reservoir distribution of sha 4 upper member of Shahejie formation in Bonan Sub Sag[J]. Xinjiang Petroleum Geology, 2014, 35(1):39-44.
[16] 朱定蓉, 苏朝光, 田建华. 四扣洼陷沙四段灰岩地震识别与预测[J]. 油气地球物理, 2009, 7(2):34-38.
[16] Zhu D R, Su C G, Tian J W. Seismic detection and prediction of the limestone in the Es4 of Sikou low-lying area[J]. Petroleum Geophysics, 2009, 7(2):34-38.
[17] 夏伟. 邵家洼陷沙四段湖相白云岩成因及其储层发育规律研究[D]. 青岛:中国石油大学(华东), 2017.
[17] Xia W. Study on genesis and reservoir distribution regulation of lacustrine dolomite in the fourth member of Shahejie(Es4)formation,Shaojia Sag[D]. Qingdao:China University of Petroleum (East China), 2017.
[18] 高晓鹏. 沾车地区沙四上亚段湖相碳酸盐岩沉积特征研究[D]. 北京:中国地质大学(北京), 2012.
[18] Gao X P. The sedimentologic characteristics of lacustrine carbonate rocks in the upper 4th member of Shahejie formation(E22S4U),Zhanhua and Chezhen area[D]. Beijing:China University of Geosciences(Beijing), 2012.
[19] 曾海容, 宋惠珍. 碳酸盐岩储层裂缝预测系统研究及其应用[J]. 岩石力学与工程学报, 2000, 19(s1):1037-1041.
[19] Zeng H R, Song H Z. A fracture prediction system for carbonate reservoir and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(s1):1037-1041.
[20] 张汶. 南堡凹陷湖相碳酸盐岩优质储层识别及分布预测[J]. 断块油气田, 2018, 25(5):579-584.
[20] Zhang W. Identification and distribution prediction of high-quality reservoir of lacustrine carbonate rocks in Nanpu Sag[J]. Fault-Block Oil & Gas Field, 2018, 25(5):579-584.
[21] 李勤, 李庆春, 张林. VTI介质多波各向异性参数分析[J]. 石油地球物理勘探, 2014, 49(3):503-507.
[21] Li Q, Li Q C, Zhang L. Parameter analysis of multi wave anisotropy in VTI media[J]. Oil Geophysical Prospecting, 2014, 49(3):503-507.
[22] 王洪求, 杨午阳, 谢春辉, 等. 不同地震属性的方位各向异性分析及裂缝预测[J]. 石油地球物理勘探, 2014, 49(5):925-931.
[22] Wang H Q, Yang W Y, Xie C H, et al. Azimuthal anisotropy analysis of different seismic attributes and fracture prediction[J]. Oil Geophysical Prospecting, 2014, 49(5):925-931.
[23] 苏培东, 秦启荣, 黄润秋. 储层裂缝预测研究现状与展望[J]. 西南石油学院学报, 2005, 27(5):14-17.
[23] Su P D, Qin Q R, Huang R Q. Prospects and status for the study on reservoir fractures[J]. Journal of Southwest Petroleum Institute, 2005, 27(5):14-17.
[24] 詹仕凡, 陈茂山, 李磊, 等. OVT域宽方位叠前地震属性分析方法[J]. 石油地球物理勘探, 2015, 50(5):956-966.
[24] Zhan S F, Chen M S, Li L, et al. OVT-domain wide-azimuth prestack seismic attribute analysis[J]. Oil Geophysical Prospecting, 2015, 50(5):956-966.
[25] 罗小明, 王世瑞. 纵波VTI介质各向异性参数的求取[J]. 物探与化探, 2006, 30(3):233-235.
[25] Luo X M, Wang S R. Estimation of anisotropy parameters in vtimedia using surface P wave data[J]. Geophysical and Geochemical Exploration, 2006, 30(3):233-235.
[26] Ruger A. Reflection coefficients and azimuthal AVO analysis in anisotropic media[D]. Colorado:Colorado School of Mines, 1996.
[1] 张勇, 马晓东, 李彦婧, 蔡景顺. 深度学习在南川页岩气含气量预测中的应用[J]. 物探与化探, 2021, 45(3): 569-575.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com