Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (4): 898-905    DOI: 10.11720/wtyht.2021.1320
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
基于地震环境噪声的油页岩勘探
李红星1(), 谈顺佳1,2, 姚振岸1, 黄光南1, 徐培渊2, 周杰2, 范利飞2
1.东华理工大学 核资源与环境国家重点实验室,江西 南昌 330012
2.北京劳雷物探探测仪器有限公司,北京 100025
Oil shale exploration based on seismic ambient noise
LI Hong-Xing1(), TAN Shun-Jia1,2, YAO Zhen-An1, HUANG Guang-Nan1, XU Pei-Yuan2, ZHOU Jie2, FAN Li-Fei2
1. State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330012,China
2. Beijing Laolei Geophysical Exploration Instrument Co.,Ltd.,Beijing 100025,China
全文: PDF(4006 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

作为重要的非常规油气资源,油页岩的勘探开发日益受到重视。利用地震环境噪声(微动)对地下介质的横波速度成像是一种无源、高效、低成本的地震勘探方法,是更符合“环保”要求的潜在油页岩勘探新方法。本文首次利用共中心面元空间自相关微动勘探方法,在松辽盆地开展了含油页岩地层识别研究。研究结果表明,共中心面元空间自相关微动勘探方法的观测系统可根据实际情况灵活多变,横波速度剖面与测线位置钻孔编录结果对应较好,能很好地划分主要地层,主要含油页岩的嫩江组二段呈现低横波速度特征。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李红星
谈顺佳
姚振岸
黄光南
徐培渊
周杰
范利飞
关键词 地震环境噪声油页岩共中心面元空间自相关松辽盆地    
Abstract

As oil shale is an important unconventional oil and gas resource,its exploration and development has received increasing attention.Microtremor exploration based on seismic ambient noise is a passive,efficient and low-cost method of seismic exploration,which can be used to image the shear wave velocity of underground medium and can become a potential new exploration method for oil shale more in line with the requirements of "environmental protection".For the first time,the authors applied microtremor method to oil shale exploration based on the spatial cross correlations of common central panel and conducted a study of the identification of oil shale in Songliao Basin.The results show that the geometry of microtremor method can be flexible according to the real situation,the shear wave velocity profile corresponds well with the results of borehole cataloging near the survey line and the main stratum is well divided.The second member of the Nenjiang Formation,which is mainly oil-bearing shale,exhibits low velocity characteristics.

Key wordsseismic ambient noise    oil shale    cross correlations of common central panel    Songliao Basin
收稿日期: 2020-06-18      修回日期: 2021-03-09      出版日期: 2021-08-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目(41764006);国家自然科学基金项目(41364004);江西省自然科学基金项目(20202BABL201027);核资源与环境国家重点实验室自主基金(Z1903)
作者简介: 李红星(1981-),男,教授,博士生导师,研究方向为主、被动源面波成像。Email: lihongxingniran@163.com
引用本文:   
李红星, 谈顺佳, 姚振岸, 黄光南, 徐培渊, 周杰, 范利飞. 基于地震环境噪声的油页岩勘探[J]. 物探与化探, 2021, 45(4): 898-905.
LI Hong-Xing, TAN Shun-Jia, YAO Zhen-An, HUANG Guang-Nan, XU Pei-Yuan, ZHOU Jie, FAN Li-Fei. Oil shale exploration based on seismic ambient noise. Geophysical and Geochemical Exploration, 2021, 45(4): 898-905.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1320      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I4/898
Fig.1  微动勘探基本原理示意
a—地震环境噪声;b—面波频散;c—横波速度结构
Fig.2  CMP-SPAC方法观测系统示意
a—线性共中心点观测系统;b—二维共中心面元观测系统
Fig.3  设备
Fig.4  设计观测系统示意
Fig.5  实际观测系统(7种颜色代表7次台阵观测)
a—检波器位置分布;b—检波器对中心位置分布
Fig.6  共中心面元
a—共中心面元(紫色虚线方框)划分;b—第21个共中心面元所用的检波器及其检波器之间的射线分布
Fig.7  相关系数
a—某面元的相关系数;b—3 Hz波的相关系数
Fig.8  面波频散谱
Fig.9  视横波速度剖面
地层 符号 厚度/m 特征
第四系 Q 15.9 黄土、腐殖土、散砂、砂砾
白垩系 上统 四方台组 K2s 62.8 棕红色泥岩、粉砂质泥岩与灰白、灰绿色粉砂岩、砂岩互层
嫩江组 嫩三、四段 K2n3+4 106 灰绿、灰白、灰色砂岩、粉砂岩,浅灰色、暗色泥岩
嫩二段 K2n2 105.2 灰黑泥页岩,含油页岩,重要标志层
嫩一段 K2n1 18.6 砂岩、砂砾岩夹泥岩
姚家组 K2y 163.5 灰绿色泥岩、灰白色钙质粉砂岩
青山口组 K2qn 28 灰色泥岩、黑褐色油页岩互层
泉头组 K2q 浅灰色细砂岩、棕/紫红色泥岩互层
Table 1  钻孔编录信息
[1] 胡霞, 王宇航. 松辽盆地北部嫩江组一段油页岩测井识别[J]. 地质与资源, 2014,23(3):225-229.
[1] Hu X, Wang Y H. The identification of oil shale logging of the first member of nenjiang formation in northern songliao basin[J]. Geology and Resources, 2014,23(3):225-229.
[2] 郑玉龙, 陈春瑞, 王佰长, 等. 松辽盆地北部油页岩资源潜力评价[J]. 吉林大学学报:地球科学版, 2015,45(3):683-690.
[2] Zheng Y L, Chen C R, Wang B C, et al. Resource potential evaluation of oil shale in North Songliao Basin[J]. Journal of Jilin University:Earth Science Edition, 2015,45(3):683-690.
[3] 高有峰, 王璞珺, 翟雪姣, 等. 松辽盆地东南隆起区白垩系嫩江组一段沉积相、旋回及其与松科1井的对比[J]. 岩石学报, 2010,26(1):99-108.
[3] Gao Y F, Wang P J, Qu X J, et al. Sedimentary facies and cyclostratigraphy of the Cretaceous first member of Nenjiang Formation in the Southeast uplift zone, Songliao Basin and its correlation with the CCSD-SK-I[J]. Acta Petrologica Sinica, 2010,26(1):99-108.
[4] 于文斌, 董清水, 邹吉斌, 等. 松辽盆地东南缘地浸砂岩型铀矿成矿条件分析[J]. 吉林大学学报:地球科学版, 2006,36(4):543-562.
[4] Yu W B, Dong Q S, Zou J B, et al. Analysis of metallogenic conditions of In-Situ Leachable sandstone type Uranium eposit in the Southeastern Margin of Songliao Basin[J]. Journal of Jilin University:Earth Science Edition, 2006,36(4):543-562.
[5] 张静平, 唐书恒, 吕建伟, 等. 松辽盆地青山口组一段油页岩成矿条件及有利目标区分析[J]. 地学前缘, 2012,19(1):156-162.
[5] Zhang J P, Tang S H, Lyu J W, et al. Analyses of forming condition and favorable area of oil shale in the 1st member of Qingshankou Formation,Songliao Basin [J]. Earth Science Frontiers, 2012,19(1):156-162.
[6] 郭东鑫, 唐书恒, 解慧, 等. 松辽盆地油页岩勘探开发有利区预测[J]. 西安科技大学学报, 2012,32(1):57-62.
[6] Guo D X, Tang S H, Xie H, et al. Favorable areas prediction for oil shale exploration and exploitation in Songliao basin[J]. Journal of Xi'an University of Science and Technology, 2012,32(1):57-62.
[7] 王俊秋, 林君, 陈祖斌, 等. 小型可控震源在油页岩地震勘探中的应用试验[J]. 吉林大学学报:地球科学版, 2012,42(s3):265-270.
[7] Wang J Q, Lin J, Chen Z B, et al. Experiment and application of mini vibrators seismic exploration in Oil Shale[J]. Journal of Jilin University:Earth Science Edition, 2012,42(s3):265-270.
[8] 张佳佳, 李宏兵, 姚逢昌. 油页岩的地球物理识别和评价方法[J]. 石油学报, 2012,33(4):625-632.
[8] Zhang J J, Li H B, Yao F C. A geophysical method for the identification and evaluation of oil shale[J]. Acta Petrolei Sinica, 2012,33(4):625-632.
[9] 李宇航, 张宏, 张军华, 等. 油页岩勘探开发现状及进展[J]. CT 理论与应用研究, 2014,23(6):1051-1063.
[9] Li Y H, Zhang H, Zhang J H, et al. The present situation and progress of oil shale exploration and exploitation[J]. CT Theory and Applications, 2014,23(6):1051-1063.
[10] 贾建亮, 刘招君, 陈永成. 油页岩的地震识别与评价技术[J]. 中南大学学报:自然科学版, 2015,46(7):2581-2589.
[10] Jia J L, Liu Z J, Chen Y C. A seismic technique for recognition and evaluation of oil shale[J]. Journal of Central South University:Science and Technology, 2015,46(7):2581-2589.
[11] 郭睿, 李松臣, 屈晓荣. 油页岩地球物理测井方法技术综述[J]. 中外能源, 2016,21(11):35-43.
[11] Guo R, Li S C, Qu X R. Review of geophysical logging technique for oil shale[J]. Sino-Global Energy, 2016,26(11):35-43.
[12] 冯少孔. 微动勘探技术及其在土木工程中的应用[J]. 岩石力学与工程学报, 2003,22(6):1029-1036.
[12] Feng S K. Array microtremor survey and its application to civil engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2003,22(6):1029-1036.
[13] 何正勤, 丁志峰, 贾辉, 等. 用微动中的面波信息探测地壳浅部的速度结构[J]. 地球物理学报, 2007,50(2):492-498.
[13] He Z Q, Ding Z F, Jia H, et al. To determine the velocity structure of shallow crust with surface wave information in microtremors[J]. Chinese Journal of Geophysics, 2007,50(2):492-498.
[14] Gorbatikov A V, Montesinos F G, Arnoso J, et al. New features in the subsurface structure model of EI Hierro island (Canaries) from low-frequency microseismic sounding:An insight into the 2011 Seismo-Volcanic crisis[J]. Surveys in Geophysics, 2013,34(4):463-489.
[15] Xu P, Ling S, Ran W, et al. Estimating Cenozoic thickness in the Beijing plain area using array microtremor data[J]. Seismological Research Letters, 2013,84(6):1039-1047.
[16] 徐佩芬, 侍文, 凌苏群, 等. 二维微动剖面探测“孤石”:以深圳地铁7号线为例[J]. 地球物理学报, 2012,55(6):2120-2128.
[16] Xu P F, Shi W, Ling S Q, et al. Mapping spherically weathered “Boulders” using 2D microtremor profiling method: A case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics, 2012,55(6):2120-2128.
[17] 徐佩芬, 李世豪, 杜建国, 等. 微动探测:地层分层和隐伏断裂构造探测的新方法[J]. 岩石学报, 2013,29(5):1841-1845.
[17] Xu P F, Li S H, Du J G, et al. Microtremor survey method:A new geophysical method for dividing strata and detecting the buried fault structures[J]. Acta Petrologica Sinica, 2013,29(5):1841-1845.
[18] 杜亚楠, 徐佩芬, 凌甦群. 土石混合滑坡体微动探测:以衡阳拜殿乡滑坡体为例[J]. 地球物理学报, 2018,61(4):1596-1604.
[18] Du Y N, Xu P F, Ling S Q. Microtremor survey of soil-rock mixture landslides:An example of Baidian township,Hengyang City[J]. Chinese Journal of Geophysics, 2018,61(4):1596-1604.
[19] 黄光明, 徐佩芬, 李长安, 等. 覆盖区岩溶溶洞的微动探测试验研究——以福建永安大湖盆地为例[J]. 煤炭学报, 2019,44(2):536-544.
[19] Huang G M, Xu P F, Li C A, et al. Application of 2D microtremor section survey method in covered karst area, taking Yongan Dahu Basin,Fujian Province as example[J]. Journal of China Coal Society, 2019,44(2):536-544.
[20] Lbrahim K Y, Mohamed A A, Babiker I S. Local site effects evaluation for Atbara area using microtremor measurement[J]. American Journal of Earth Sciences, 2015,2(5):134-141.
[21] Asten M W, Hayashi K. Application of the spatial auto-correlation method for shear-wave velocity studies using ambient noise[J]. Surveys in Geophysics, 2018,39:633-659.
[22] 黄忠贤, 李红谊, 胥颐. 南北地震带岩石圈 S 波速度结构面波层析成像[J]. 地球物理学报, 2013,56(4):1121-1131.
[22] Huang Z X, Li H Y, Xu Y. Lithospheric S-wave velocity structure of the North-South seismic belt of China from surface wave tomography[J]. Chinese Journal of Geophysics, 2013,56(4):1121-1131.
[23] 张宝龙, 李志伟, 包丰, 等. 基于微动方法研究五大连池火山区尾山火山锥浅层剪切波速度结构[J]. 地球物理学报, 2016,59(10):3662-3673.
[23] Zhang B L, Li Z W, Bao F, et al. Shallow shear-wave velocity structures under the Weishan volcanic cone in Wudalianchi volcano field by microtremor survey[J]. Chinese Journal of Geophysics, 2016,59(10):3662-3673.
[24] Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors.[J]. Bull. Earthq. Res. Inst., 1957,35:415-456.
[25] Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969,57(8):1408-1418.
[26] Asten M W, Henstridge J D. Array estimators and the use of microseisms for reconnaissance of sedimentary basins[J]. Geophysics, 1984,49:1828-1837.
[27] Okada H K, Matsushima , Hidaka E. Comparison of spatial autocorrelation method and frequency-wavenumber spectral method of estimating the phase velocity of Rayleigh waves in long-period microtremors[R]. Geophys. Bull. Hokkaido Univ., 1987.
[28] Kataoka S, Kawase H. Estimation of underground structure at higashinada ward,kobe using surface wave of microtremor and explosion record[J]. Journal of the Seismological Society of Japan, 1998,51(1):99-112.
[29] Satoh T, Kawase H, Matsushima S. Estimation of S-wave velocity structures in and around the Sendai Basin,Japan,using array records of microtremors[J]. Bull. Seism. Soc. Am., 2001,91:206-218.
[30] Ohori M, Nobata A, Wakamatsu K. Comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor arrays[J]. Bulletin of the Seismological Society of America, 2002,92(6):2323-2332.
[31] Asten M W. The use of microseisms in geophysical exploration[D]. Australia:Macquarie University, 1976.
[32] Ling S, Okada H. An extended use of the spatial autocorrelation method for the estimation of structure using microtremors[C]// Nagoya:Proc. of the 89th SEGJ Conference, 1993: 44-48.
[33] Betting B, Bard P, Scherbaum F, et al. Analysis of dense array measurements using the modified spatial auto-correlation method (SPAC):Application to Grenoble area[J]. Boletin de Geofisica Teoria e Applicata, 2001,42(3-4):281-304.
[34] Louie J N. Faster,better:shear-wave velocity to 100 meters depth from refraction microtremor arrays[J]. Bull. Seism. Soc. Am., 2001,91:347-364.
[35] Stephenson W J, Louie J N, Pullammanapallil S, et al. Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley:Implications for earthquake ground-motion assessment[J]. Bulletin of the Seismological Society of America, 2005,95(6):2506-2510.
[36] Pancha A, Anderson J G, Louie J N, et al. Measurement of shallow shear wave velocities at a rock site using the ReMi technique[J]. Soil Dynamics & Earthquake Engineering, 2008,28(7):522-535.
[37] Cho I, Tada T, Shinozaki Y. A new method to determine phase velocities of Rayleigh waves from microseisms[J]. Geophysics, 2004,69(6):1535-1551.
[38] Cho I, Tada T, Shinozaki Y. A generic formulation for microtremor exploration methods using three-component records from a circular array[J]. Geophysical Journal International, 2006,165:236-258.
[39] Ghavez-Garcia F J, Rodriguez M, Stephenson M. An alternative approach to the SPAC analysis of microtremors:Exploiting stationarity of noise[J]. Bulletin of the Seismological Society of America, 2005,95(1):277-293.
[40] Okada H. Theory of efficient array observations of microtremors with special reference to the SPAC method[J]. Exploration Geophysics, 2006,37(1):73-85.
[41] Shabani E, Bard P Y, Mirzaei N, et al. An extended MSPAC method in circular arrays[J]. Geophysical Journal International, 2010,182:1431-1437.
[42] Shabani E, Eskandari-Ghadi M, Mirzaei N. The SPAC method for a finite M-station circular array using horizontally polarized ambient noise[J]. Bulletin of the Seismological Society of America, 2011,101(2):544-557.
[43] Park C, Miller R, Laflen F, et al. Imaging dispersion curves of passive surface waves[C]// Denver:SEG Int'l Exposition and 74th Annual Meeting, 2004: 10-15.
[44] Park C B, Miller R D, Xia J, et al. Multichannel analysis of surface waves (MASW)-active and passive methods[J]. The Leading Edge, 2007,26(1):60-64.
[45] Cheng F, Xia J H, Xu Y X, et al. A new passive seismic method based on seismic interferometry and multichannel analysis of surface waves[J]. Journal of Applied Geophysics, 2015,117:126-135.
[46] Baglari D, Dey A, Taipodia J. A state-of-the-art review of passive MASW survey for subsurface profiling[J]. Innovative Infrastructure Solutions, 2018,3(1):1-28.
[47] Park C B, Miller R D, Ryden N, et al. Combined use of active and passive surface waves[J]. Journal of Environmental & Engineering Geophysics, 2005,10(3):323-334.
[48] Pedro M P, Navarro M, Jaruselsky P C, et al. Shear-wave velocity structure from MASW and SPAC methods.The case of Adra town,SE Spain[J]. Near Surface Geophysics, 2018,16(3):356-371.
[49] Hayashi K. CMP analysis of multi-channel and multi-shot surface-wave data[J]. SEG Technical Program Expanded Abstracts, 2002,21(1):2478-2481.
[50] Hayashi K, Suzuki H. CMP cross-correlation analysis of multi-channel surface-wave data[J]. Exploration Geophysics, 2004,35(1):7-13.
[51] Askari R, Demeersman K, Ferguson R J. Estimation of near surface shear wave velocity using CMP cross-correlation of surface waves (CCSW)[C]// SEG Technical Program Expanded Abstracts, 2012: 1-5.
[52] Anukwu G C, Khalil A E, Nawawi M, et al. Multi-channel analysis of surface waves (MASW) using CMP analysis to identify soil problems threat on the heritage site at Georgetown,Malaysia[C]// CPS/SEG International Geophysical Conference, 2018: 24-27.
[53] Cheng F, Mi B, Hu Y, et al. CMP stacking for multi-channel analysis of single-shot surface wave data[C]// The 7th International Conference on Environmental and Engineering Geophysics, 2016: 254-257.
[54] Hayashi K, Craig M, Kita T, et al. CMP spatial autocorrelation analysis of multichannel passive surface-wave data[C]// SEG Technical Program Expanded Abstracts, 2015: 2200-2204.
[55] Tan S J, Hayashi K, He B, et al. Active fault investigation by 3D ambient noise tomography in Hebei province,China[C]// San Antonio:SEG International Exposition and 89th Annual Meeting, 2019: 4790-4794.
[56] Xu P F, Ling S Q, Li C J. Mapping deeply buried geothermal faults using microtremor array analysis[J]. Geophysical Journal International, 2012,188(1):115-122.
[1] 宫明旭, 白利舸, 曾昭发, 吴丰收. 基于机器学习松辽盆地大地热流计算与特征分析[J]. 物探与化探, 2023, 47(3): 766-774.
[2] 周亚龙, 孙忠军, 杨志斌, 张富贵, 张舜尧. 多目标化探数据与油气藏指标特征的相关性研究[J]. 物探与化探, 2015, 39(3): 466-472.
[3] 袁志华, 徐丽雯. 松辽盆地泰康隆起东翼杜20-3井区油气微生物勘探[J]. 物探与化探, 2014, 38(2): 304-308.
[4] 刘海良, 苏文利, 罗振佳, 李磊. 页岩气、油页岩资源的电阻率法勘查[J]. 物探与化探, 2012, 36(3): 503-506.
[5] 闫磊, 潘保芝, 陈玉魁, 杨雪, 张晓明. 松辽盆地东岭地区火山岩气层测井识别与综合评价[J]. 物探与化探, 2008, 32(6): 656-660.
[6] 姚俊梅, 夏响华. 松辽盆地南部油气化探方法技术研究[J]. 物探与化探, 2000, 24(6): 418-425.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com