Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (3): 576-582    DOI: 10.11720/wtyht.2021.1312
  清洁能源勘探 本期目录 | 过刊浏览 | 高级检索 |
音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例
王佳龙(), 邸兵叶(), 张宝松, 赵东东
中国地质调查局 南京地质调查中心,江苏 南京 210016
The application of audio frequency magnetotelluric method to the geothermal exploration: A case study of Huangniqiao area, Ninghua County, Fujian Province
WANG Jia-Long(), DI Bing-Ye(), ZHANG Bao-Song, ZHAO Dong-Dong
Nanjing Center,China Geological Survey,Nanjing 210016,China
全文: PDF(2751 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为查明福建省三明市宁化县黄泥桥地区地热资源赋存情况,利用音频大地电磁法(AMT)在该区开展地热勘查工作,通过分析工区内地层结构、岩性特征,推断了区内断裂构造分布,根据断裂展布特征圈定了1处优选地热异常靶区,经钻探验证,井孔含水地层与AMT二维反演低阻异常吻合较好。在验证基础上,构建了区内断裂空间分布模型,并根据AMT反演结果和断裂展布特征推断了4处潜在断裂型热储区。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王佳龙
邸兵叶
张宝松
赵东东
关键词 地热勘查音频大地电磁测深断裂构造热储区    
Abstract

In order to find out the occurrence status of geothermal resources in Huangniqiao area, Ninghua County, Sanming City, Fujian Province, the authors carried out geothermal exploration work in this area by using the audio frequency magnetotelluric method (AMT). Based on the analysis of the characteristics of layer structure and lithology in the work area, the fault structure distribution in the area was inferred and, according to the fault distribution characteristics, one optimized geothermal abnormal target area was delineated. Drilling shows that the well bore water-bearing formation is in good agreement with the low resistivity anomaly of AMT two-dimensional inversion. On the basis of verification, the spatial distribution model of faults in the area was constructed, and four potential fault type thermal storage areas were inferred according to AMT inversion results and fault distribution characteristics. The overall research results show that AMT method is feasible and effective for geothermal resource exploration, which can provide important reference value for the deployment of geothermal exploration in similar areas in the future.

Key wordsgeothermal exploration    audio frequency magnetotelluric sounding    fault structure    zoned reservoir area
收稿日期: 2020-06-14      修回日期: 2020-12-04      出版日期: 2021-06-20
ZTFLH:  P631  
通讯作者: 邸兵叶
作者简介: 王佳龙(1991-),男,助理工程师,主要研究电磁法在地热、油气和页岩气等资源调查中的应用。Email: 710636168@qq.com
引用本文:   
王佳龙, 邸兵叶, 张宝松, 赵东东. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3): 576-582.
WANG Jia-Long, DI Bing-Ye, ZHANG Bao-Song, ZHAO Dong-Dong. The application of audio frequency magnetotelluric method to the geothermal exploration: A case study of Huangniqiao area, Ninghua County, Fujian Province. Geophysical and Geochemical Exploration, 2021, 45(3): 576-582.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1312      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I3/576
Fig.1  黄泥桥地区地质概况及AMT测线分布[11]
地层或岩体 岩性 标本数 电阻率/(Ω·m) 几何平均值/(Ω·m) 备注
第四系(Q) 黏土 10 30~920 318 地表小四极测定法
岩体 花岗岩 32 4 102~105 014 16 289.43 岩心测定
Table 1  黄泥桥地区岩石电性参数统计
Fig.2  研究区AMT测线二维非线性共轭梯度反演三维剖面
地层或岩体 井段/m 厚度/m 侧向电阻率/(Ω·m) 备注
第四系(Q) 0~5.75 5.75 10.90~21.21 黏土和强风化层
岩体 246.90~248.70 1.80 124.47~292.56 含水破碎带
岩体 253.30~253.68 0.38 204.94~350.51 含水破碎带
岩体 256.92~259.55 2.63 118.06~170.03 含水破碎带
岩体 260.10~376.38 116.28 447.15~8 330.79 花岗岩、辉绿岩
岩体 474.50~475.98 1.48 219.77~430.49 含水破碎带
Table 2  DR01井侧向电阻率结果[20]
Fig.3  L106线钻探验证对比
Fig.4  黄泥桥地区综合地质推断解释成果
[1] 徐世光, 郭远生. 地热学基础[M]. 北京: 科学出版社, 2009.
[1] Xu S G, Guo Y S. Fundamentals of geothermal science [M]. Beijing: Science Press, 2009.
[2] 武斌, 曹俊兴, 邹俊, 等. 音频大地电磁测深法在康定小热水地热勘查研究中应用[J]. 物探化探计算技术, 2011, 33(5):507-510.
[2] Wu B, Cao J X, Zou J, et al. Application of audio frequency magnetotelluric sounding method in the study of geothermal exploration of small hot water in Kangding[J]. Geophysical and Geochemical Exploration Calculation Technology, 2011, 33(5):507-510.
[3] 曹永安, 姜海灏. 综合物探方法在鞍山市某地热田外围地热勘查中的应用[J]. 地质找矿论丛, 2013, 28(1):153-157.
[3] Cao Y A, Jiang H H. The application of comprehensive geophysical method in the geothermal exploration of the periphery of a geothermal field in Anshan City[J]. Geological Prospecting Cluster, 2013, 28(1):153-157.
[4] 孙海川, 刘永亮, 邵程龙. 综合物探在海石湾地区地热勘查中的应用[J]. 物探化探计算技术, 2019, 43(2):290-297.
[4] Sun H C, Liu Y L, Shao C L. Application of comprehensive geophysical exploration to geothermal exploration in Haishiwan area[J]. Geophysical and Geochemical Exploration Calculation Technology, 2019, 43(2):290-297.
[5] 赵宝峰, 汪启年, 官大维. 带状热储地热田的地球物理场特征——以湖南省热水圩地热田为例[J]. 物探与化探, 2019, 43(4):734-740.
[5] Zhao B F, Wang Q N, Guan D W. Geophysical field characteristics of zonal thermal storage geothermal field:A case study of hot water Wei geothermal field in Hunan Province[J]. Geophysical and Geochemical Exploration, 2019, 43(4):734-740.
[6] 徐新学, 夏训银, 刘俊昌, 等. MT及CSAMT方法在城市地热资源勘探中的应用[J]. 桂林工学院学报, 2004, 24(3):278-281.
[6] Xu X X, Xia X Y, Liu J C, et al. Application of MT and CSAMT methods in urban geothermal resources exploration[J]. Journal of Guilin Institute of Technology, 2004, 24(3):278-281.
[7] 叶益信, 邓居智, 方根显. 高频大地电磁测深(EH-4) 在热储构造勘查中的试验研究——以抚州地热区为例[J]. 地质与勘探, 2011, 47(4):649-653.
[7] Ye Y X, Deng J Z, Fang G X. Experimental study of high frequency magnetotelluric sounding (EH-4) in the exploration of thermal reservoir structure — Taking Fuzhou geothermal area as an example[J]. Geology and Exploration, 2011, 47(4):649-653.
[8] 汪琪, 赵志鹏, 尹秉喜, 等. 电磁测深MT法在平原深部地热调查中的应用[J]. 工程地球物理学报, 2016, 13(6):782-787.
[8] Wang Q, Zhao Z P, Yin B X, et al. Application of MT method of electromagnetic sounding in deep geothermal survey of plain[J]. Journal of Engineering Geophysics, 2016, 13(6):782-787.
[9] 王佳龙, 张宝松, 陈基炜, 等. 大地电磁测深不同反演方法的应用效果对比——以安徽皖江地区页岩气调查为例[J]. 华东地质, 2020, 41(1):79-87.
[9] Wang J L, Zhang B S, Chen J W, et al. Comparison of application effects of different inversion methods of magnetotelluric sounding — a case study of shale gas survey in Anhui Wanjiang area[J]. Geology of East China, 2020, 41(1):79-87.
[10] 陈乐寿. 大地电磁测深—探测地球深部电性和物质状态的一种有效手段[J]. 科技进展, 2009, 31(1):39-46.
[10] Chen L S. Magnetotelluric sounding:An effective means to detect the electrical properties and physical state of the deep earth[J]. Scientific and Technological Progress, 2009, 31(1):39-46.
[11] 林昭丽, 张火亮. 三明市宁化县城南乡黄泥桥地热异常区调查报告[R]. 三明:福建省闽西地质大队资源环境调查研究院, 2016.
[11] Lin Z L, Zhang H L. Investigation report of huangniqiao geothermal anomaly area, Nanxiang, Ninghua County,Sanming City [R]. Sanming:resource and environment investigation and Research Institute of Minxi Geological Brigade, Fujian Province, 2016.
[12] 周珍琦, 陈润生, 夏春金, 等. 福建省(含台湾)矿产资源潜力评价[R].福州:福建省地质调查研究院[R]. 福州:福建省地质调查研究院, 2013.
[12] Zhou Z Q, Chen R S, Xia C J, et al. Mineral resource potential evaluation of Fujian Province (including Taiwan)[R]. Fuzhou:Fujian Geological Survey Institute, 2013.
[13] 刘瑞德, 黄力军, 孟银生. 可控源音频大地电磁测深法在地热田勘查中应用效果初探[J]. 工程地球物理学报, 2007, 4(2):86-89.
[13] Liu R D, Huang L J, Meng Y S. Application effect of controlled source audio frequency magnetotelluric sounding in geothermal field exploration[J]. Journal of Engineering Geophysics, 2007, 4(2):86-89.
[14] 汪集旸, 熊亮萍, 庞忠和. 中低温对流型地热系统 [M]. 北京: 科学出版社, 1993.
[14] Wang J Y, Xiong L P, Pang Z H. Medium low temperature convective geothermal system [M]. Beijing: Science Press, 1993.
[15] 王斌, 李百祥, 李福城. 物探成果在探讨青海鄂拉山活动断裂带控热控震的分段差异性中的应用[J]. 物探与化探, 2015, 39(2):311-317.
[15] Wang B, Li B X, Li F C. The application of geophysical exploration results in the study of the segmented difference of thermal and seismic control in the Elashan active fault zone, Qinghai[J]. Geophysical and Geochemical Exploration, 2015, 39(2):311-317.
[16] 卫万顺, 李宁波, 冉伟彦, 等. 中国浅层地热能资源[M]. 北京: 中国大地出版社, 2010.
[16] Wei W S, Li N B, Ran W Y, et al. Shallow geothermal energy resources in China [M]. Beijing: China Earth Press, 2010.
[17] 陈小斌, 叶涛, 蔡军涛, 等. 大地电磁资料精细处理和二维反演解释技术研究(七)——云南盈江—龙陵地震区深部电性结构及孕震环境[J]. 地球物理学报, 2019, 62(4):1377-1393.
[17] Chen X B, Ye T, Cai J T, et al. Research on fine processing of magnetotelluric data and two-dimensional inversion and interpretation technology (7)—deep electrical structure and seismogenic environment in Yingjiang Longling seismic area, Yunnan[J]. Journal of Geophysics, 2019, 62(4):1377-1393.
[18] 熊彬, 罗天涯, 蔡红柱, 等. 起伏地形大地电磁二维反演[J]. 物探与化探, 2016, 40(3):587-593.
[18] Xiong B, Luo T Y, Cai H Z, et al. Two dimensional magnetotelluric inversion of rolling terrain[J]. Geophysical and Geochemical Exploration, 2016, 40(3):587-593.
[19] 朱培民, 王家映. 共轭梯度法[J]. 工程地球物理学报, 2008, 5(4):382-386.
[19] Zhu P M, Wang J Y. Conjugate gradient method[J]. Journal of Engineering Geophysics, 2008, 5(4):382-386.
[20] 刘复焜, 肖晔, 陈奎, 等. 长汀—宁化地区地热钻探钻孔综合测井报告[R]. 龙岩:福建省121地质大队, 2020.
[20] Liu F K, Xiao Y, Chen K, et al. Comprehensive logging report of geothermal drilling in Changting Ninghua area[R]. Longyan:Fujian 121 Geological Brigade, 2020.
[1] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[2] 蒋首进, 陈永凌, 李怀远, 胡俊峰. 藏东南冻错曲塘布段冰碛物电阻率特征[J]. 物探与化探, 2023, 47(1): 73-80.
[3] 孙海川. 兰州新区西部恐龙园区块地热地质条件分析[J]. 物探与化探, 2022, 46(6): 1411-1418.
[4] 梁雨东, 任康辉, 姜鑫, 丁保艳, 童品贤, 胡沛青. 活性炭测氡法在地热勘探中的应用——以张掖—民乐盆地为例[J]. 物探与化探, 2022, 46(6): 1419-1424.
[5] 龙慧, 谢兴隆, 李凤哲, 任政委, 王春辉, 郭淑君. 二维地震和高密度电阻率测深揭示雄安新区浅部三维地质结构特征[J]. 物探与化探, 2022, 46(4): 808-815.
[6] 汪名鹏, 杨俊松, 刘彦华. 地温测量在地热勘查中的应用[J]. 物探与化探, 2022, 46(4): 838-844.
[7] 邢锦程, 袁炳强, 张春灌, 冯旭亮, 段瑞锋, 薛健, 贾洪杨, 李想. 特立尼达盆地重力场特征及油气远景[J]. 物探与化探, 2021, 45(6): 1606-1616.
[8] 陈晓晶, 虎新军, 李宁生, 仵阳, 程国强, 倪萍, 曹园园, 卜进兵. 银川盆地东缘地热成藏模式探讨[J]. 物探与化探, 2021, 45(3): 583-589.
[9] 刘成功, 景建恩, 金胜, 魏文博. 广西大厂矿田深部成矿预测及成矿机制研究[J]. 物探与化探, 2021, 45(2): 337-345.
[10] 刘俊峰, 程云涛, 邓志强, 周芳春, 曹创华, 刘翔, 曾美强, 李杰, 黄志彪, 陈虎. CSAMT与AMT数据“拼接”处理——以湖南仁里铌钽矿床7号剖面为例[J]. 物探与化探, 2021, 45(1): 68-75.
[11] 屈利军, 王庆, 李波, 姚伟. 综合物探方法在湖南香花岭矿田三合圩矿区深部成矿规律研究中的应用[J]. 物探与化探, 2020, 44(6): 1313-1321.
[12] 章惠, 隋少强, 钱烙然, 汪新伟. 多种非震方法在山东齐河地热勘查中的应用[J]. 物探与化探, 2020, 44(4): 727-733.
[13] 许文强, 袁炳强, 刘必良, 姚长利. 多种重磁位场边缘识别方法及在南黄海北部断裂构造识别中的应用研究[J]. 物探与化探, 2020, 44(4): 962-974.
[14] 郭嵩巍, 刘小畔, 郑凯, 张磊. 基于全区视电阻率的瞬变电磁一维Occam反演中雅克比矩阵的解析算法[J]. 物探与化探, 2020, 44(3): 559-567.
[15] 朱自串, 周丹, 李德文, 余润龙. 音频大地电磁测深法在老挝万象盆地钾镁盐矿产勘探中的运用效果[J]. 物探与化探, 2019, 43(6): 1268-1276.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com