Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (2): 257-265    DOI: 10.11720/wtyht.2021.1573
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
土壤(土被)中后生异常与深穿透地球化学
赵阳(), 汪明启, 张鹤
中国地质大学(北京) 地球科学与资源学院,北京 100083
Epigenetic anomaly in soil or regolith and deep-penetrating geochemistry
ZHAO Yang(), WANG Ming-qi, Zhang He
School of Earth Sciences and Resources,China University of Geosciences(Beijing), Beijing 100083,China
全文: PDF(637 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

本文论述了土壤定义、土壤中同生组分和后生组分,重点论述了后生异常, 特别是上置后生异常。 提出深穿透化探技术设计原理是提取土壤中来自深部与矿化有关的后生组分,而尽可能不破坏或少破坏土壤基体(同生组分)。 用实例说明同生异常和后生异常特征, 为什么常规化探(全量) 难以在运积物覆盖区隐伏矿勘查中发挥作用的原因。从提取土壤后生异常角度,分析了各种深穿透技术历史、 现状和存在问题 。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵阳
汪明启
张鹤
关键词 土壤同生组分后生组分上置后生异常深穿透地球化学    
Abstract

Syngeneic and epigenetic components in soil or regolith were discussed from definition. Epigenetic anomalies were classified as lateral and top anomalies,and top epigenetic anomalies are the base for deep penetration technology design. The principle of deep penetrating geochemical exploration technology is to extract the epigenetic components related to deep mineralization without destroying or less destroying the soil matrix (syngeneic components). The authors use a case study to illustrate what the epigenetic anomalies are and why conventional geochemical exploration (total) cannot be used for mineral exploration in overburden areas. From the perspective of extracting epigenetic anomalies in soil, the history, updates and problems of various deep penetration technologies are analyzed.

Key wordssoil    syngenetic component    epigenetic component    top epigenetic anomalies    deep-penetrating geochemistry
收稿日期: 2020-12-21           出版日期: 2021-04-20
ZTFLH:  P632  
通讯作者: 汪明启
作者简介: 赵阳(1994-),男,在读硕士研究生,从事勘查地球化学方面的研究工作。Email: 617071796@qq.com
引用本文:   
赵阳, 汪明启, 张鹤. 土壤(土被)中后生异常与深穿透地球化学[J]. 物探与化探, 2021, 45(2): 257-265.
ZHAO Yang, WANG Ming-qi, Zhang He. Epigenetic anomaly in soil or regolith and deep-penetrating geochemistry. Geophysical and Geochemical Exploration, 2021, 45(2): 257-265.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1573      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I2/257
样品号 同生组分/10-6 后生组分/10-9 全量/10-6 备注
1 25.2 112 25.31
2 25.5 213 25.71
3 24.0 150 24.15
4 24.8 223 24.92
5 26.0 187 26.29
6 25.1 174 25.27
7 25.3 123 25.42
8 25.1 178 25.28
9 24.2 211 24.31
10 25.3 413 25.71
11 24.4 598 25.00
12 25.6 502 26.10 矿化体上方
13 25.4 2210 27.61 矿化体上方
14 26.1 1796 27.90 矿化体上方
15 24.7 802 25.60 矿化体上方
16 25.2 401 25.60
17 26.1 187 26.29
18 24.3 212 24.51
19 25.2 182 25.38
20 25.5 201 25.70
21 23.4 173 23.57
22 25.1 166 25.27
23 26.0 181 26.18
24 25.2 221 25.42
25 24.8 179 24.98
Table 1  黄土覆盖区某多金属矿土壤中Cu组分特征
Fig.1  黄土覆盖区某多金属矿土壤Cu分布
[1] Hawkes H E, Webb J S. Geochemistry in mineral exploration[J]. Soil ence, 1962,95(4):283.
[2] Merrill G P. A treatise on rocks:Rock weathering and soils[M]. London:Macmillan, 1897:411.
[3] Eggleton R A. Glossary of regolith surficial geology, soils and landscape[M]. Perth:CRC LEME Publication, 2001: 144-169.
[4] 谢学锦, 王学求. 深穿透地球化学新进展[J]. 地学前缘, 2003,10(1):225-238.
[4] Xie X J, Wang X Q. Recent developments on deep-penetrating geochemistry[J]. Earth Science Frontiers, 2003,10(1):225-238.
[5] 刘应汉, 任天祥, 汪明启. 应用于矿产勘查的地下纳米物质[J]. 矿物岩石地球化学通报, 1997,16:250-253.
[5] Liu Y H, Ren T X, Wang M Q. Application of underground nano size matter to mineral resources exploration[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 1997,16:250-253.
[6] 程志中, 王学求, 喻劲松. 深穿透地球化学方法在黄土覆盖区的应用——张全庄金矿试验实例[J]. 矿床地质, 2002,21(S):1124-1127.
[6] Cheng Z Z, Wang X Q, Yu J S. Application of deep-penetration geochemistry in loess terrain: A case of Zhangquanzhuang gold deposit[J]. Mineral Deposits. 2002,21(S):1124-1127.
[7] 程志中, 王学求, 刘大文. 地球气组分与隐伏岩体的关系初探[J]. 物探与化探, 2002,30(2):90-93.
[7] Cheng Z Z, Wang X Q, Liu D W. Preliminary study on the relationship between earth gas components and concealed rock mass[J]. Geophysical and Geochemical Exploration, 2002,30(2):90-93.
[8] Malmqvist L, Kristiansson K. Experimental evidence for an ascending microflow of geogas in the ground[J]. Earth and Planetary Science Letters, 1984,70:407-416.
doi: 10.1016/0012-821X(84)90024-4
[9] 童纯菡, 梁兴中. 核地球物理勘探新技术——地气法[J]. 地学进展. 1989,1(13):10-12.
[9] Tong C H, Liang X Z. New technology of nuclear geophysical exploration-Geo-gas[J]. Method Advances in Earth Science, 1989,1(13):10-12.
[10] 童纯菡, 梁兴中, 李巨初, 等. 隐伏金矿床上的地气异常[J]. 科学通报, 1990,35(16):1280-1285.
[10] Tong C H, Liang X Z, Li J C, et al. Abnormal geogas in hidden gold deposits[J]. Chinese Science Bulletin, 1990,35(16):1280-1285.
[11] 童纯菡, 李巨初, 梁兴中, 等. 某金矿床地气异常初步研究及其地质意义[J]. 成都地质学院学报, 1991,18(3):116-121.
[11] Tong C H, Li J C, Liang X Z, et al. A preliminary study of geogas anomalyon a gold deposit and its geological significance[J]. Journal of Chengdu College of Geology. 1991,18(3):116-121.
[12] 童纯菡, 梁兴中, 李巨初. 地气测量研究及在东季金矿的试验[J]. 物探与化探, 1992,16(6):445-451.
[12] Tong C H, Liang X Z, Li J C, et al. The tentative geogas survey in the Dongji gold deposit[J]. Geophysical and Geochemical Exploration, 1992,16(6):445-451.
[13] 王学求, 谢学锦, 卢荫庥. 地气动态提取技术的研制及在寻找隐伏矿上的初步试验[J]. 物探与化探, 1995,19(3):161-171.
[13] Wang X Q, Xie X J, Lu Y X. Dynamic collection of geogas and its preliminary application in search for concealed deposits[J]. Geophysical and Geochemical Exploration, 1995,19(3):161-171.
[14] Wang X Q, Liu D W, Cheng Z Z, et al. Wide-spaced geochemical mapping for giant ore deposits in concealed terrains[G] //Xie X J.Proceedings of 30th International Geological Congress (Geochemistry). Utrecht: International Science Publisher, 1997,19:127-140.
[15] Wang X Q, Xie X J, Cheng Z Z, et al. Delineation of regional geochemical anomalies penetrating through thick cover in concealed terrains:A case history from the Olympic Dam deposit, Australia[J]. Journal of Geochemical Exploration, 1999,66(1-2):85-97.
doi: 10.1016/S0375-6742(99)00036-9
[16] 刘应汉, 任天祥, 汪明启, 等. 隐伏矿区地气测量试验及效果[J]. 有色金属矿产与勘查, 1995,4(6):355-360.
[16] Liu Y H, Ren T X, Wang M Q, et al. Test results of geogas survey in hidden mining areas[J]. Mineral Exploration, 1995,4(6):355-360.
[17] 伍宗华. 地气测量在叶县—邓县—南漳地学剖面研究中的应用[J]. 岩石学报, 1995,11(3):333-342.
[17] Wu Z H. A study of application of geogas survey in Yexian-Dengxian-Nanzhang geoscience profile[J]. Acta Petrologica Sinica, 1995,11(3):333-342.
[18] 伍宗华, 金仰芬, 古平, 等. 地气测量的原理及其在地质勘查中的应用[J]. 物探与化探, 1996,20(4):259-264.
[18] Wu Z H, Jin Y F, Gu P, et al. Principles of geogas survey and its applicationin geological exploration[J]. Geophysical and Geochemical Exploration, 1996,20(4):259-264
[19] 刘应汉, 孔牧, 孙忠军, 等. 纳米物质测量的液态捕集剂研究[J]. 物探与化探, 2003,27(6):455-457.
[19] Liu Y H, Kong M, Sun Z J, et al. The liquid collecting mediafor nanoscal material geochemical survey[J]. Geophysical and Geochemical Exploration, 2003,27(6):455-457.
[20] 汪明启, 高玉岩, 张得恩, 等. 地气测量在北祁连盆地区找矿突破及其意义[J]. 物探与化探, 2006,30(1):7-12.
[20] Wang M Q, Gao Y Y, Zhang D E, et al. Breakthrough in mineral exploration using geogas survey inThebasin area of northern Qilian region and its significance[J]. Geophysical and Geochemical Exploration, 2006,30(1):7-12.
[21] 汪明启, 高玉岩. 利用铅同位素研究金属矿床地气物质来源:甘肃蛟龙掌铅锌矿床研究实例[J]. 地球化学, 2007,36(4):391-399.
[21] Wang M Q, Gao Y Y. Tracing source of geogas with lead isotopes:A case study in Jiaolongzhang Pb-Zn deposit, Gansu Province[J]. Geochimica, 2007,36(4):391-399.
[22] Wang M Q, Gao Y Y. Progress in the collection of Geogas in China[J]. Geochemistry :Exploration Environment Analysis, 2008,8(2):183-190.
doi: 10.1144/1467-7873/07-138
[23] 高玉岩, 汪明启, 夏修展, 等. 某些景观区隐伏金属矿地气法试验结果[J]. 物探与化探. 2010,34(2):144-149.
[23] Gao Y Y, Wang M Q, Xia X Z, et al. Geogas tests in the exploration of concealed metallic deposits in some landscape areas[J]. Geophysical and Geochemical Exploration, 2010,34(2):144-149.
[24] 高玉岩, 汪明启, 夏修展, 等. 冲积平原区隐伏金属矿地气法试验研究[J]. 地质找矿论丛, 2011,26(3):345-349.
[24] Gao Y Y, Wang M M, Xia X Z, et al. Results of geogas test in exploring blind metallic deposits in alluvial plain[J]. Contributions to Geology and Mineral Resources Research, 2011,26(3):345-349.
[25] 任天祥, 刘应汉, 汪明启. 纳米科学与隐伏矿藏——一种寻找隐伏矿的新方法、新技术[J]. 科技导报, 1995,18(8):33-36.
[25] Ren T X, Liu Y H, Wang M Q. Nanometre science and hidden mineral resources[J]. Science & Technology Review, 1995,18(8):33-36.
doi: 10.1126/science.18.445.33
[26] 童纯菡, 李巨初, 葛良全, 等. 地气物质纳米微粒的实验观测及其意义[J]. 中国科学, 1998,28(2):153-155.
[26] Tong C H, Li J C, Ge L Q, et al. Experimental observation and significance of nanoparticles of geo-gas materials[J]. Science China Press, 1998,28(2):153-155.
[27] 童纯菡, 李巨初. 地气测量寻找深部隐伏金矿及其机理研究[J]. 地球物理学报, 1999,42(1):135-142.
[27] Tong C H, Li J C. Geogas prospecting and its mechanism in the search for deep-seated or concealed gold deposits[J]. Chinese Journal of Geophysics, 1999,42(1):135-142.
[28] 曹建劲, 梁致荣, 刘可星, 等. 红层风化壳对地气纳米金微粒吸附的模拟实验研究[J]. 自然科学进展, 2004,14(7):826-829.
[28] Cao J J, Liang Z R, Liu K X, et al. Simulation experimental study on the adsorption of earth gas nano-gold particles by the red weathering Crust[J]. Progress in Natural Science, 2004,14(7):826-829.
[29] 张必敏, 王学求, 叶荣, 等. 纳米金属微粒的采集观测及其对地球化学勘查的意义[J]. 物探化探计算技术, 2014,36(6):708-714.
[29] Zhang B M, Wang X Q, Ye R, et al. Collection and observation of nanoparticles and the significance for geochemical exploration[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014. 36(6):708-714.
[30] Mann A W, Birrell R D, Lawrance L M, et al. The new Mobile Metal Ion approach to detection of buried mineralisation[C] //An International Conference on Evolution, Crustal Metallogeny and Exploration of the Eastern Goldfields,Australian Geological Survey Organisation, 1993.
[31] Mann A W, Gay L M, Birrell R D, et al. Mechanism of formation of mobile metal ion anomalies[J]. Minerals and Energy Research Institute of Western Australia, 1995,153:407.
[32] Mann A W, Birrell R D, Mann A T, et al. Application of the Mobile Metal Ion technique to routine geochemical exploration[J]. Journal of Geochemical Exploration, 1998,61(1-3):87-102.
doi: 10.1016/S0375-6742(97)00037-X
[33] Wamtech Pty. Ltd.MMI manual for Mobile Metal Ion geochemical soil surveys[J]. Galer MMI Survey, 2004: 31.
[34] Sylvester G C, Mann A W, Rate A W, et al. Application of high-resolution Mobile Metal Ion (MMI) soil geochemistry to archaeological investigations: An example from a Roman metal working site, Somerset, United Kingdom[J]. Geoarchaeology, 2012,32(5):563-574.
[35] Graham C S, Alan W M, Samantha R C, et al. MMI partial extraction geochemistry for the resolution of anthropogenic activities across the archaeological Roman town of Calleva Atrebatum[J]. Geochemistry: Exploration, Environment, Analysis, 2017,18(1):58-74.
[36] Reimann C, Schilling J, Roberts D, et al. A regional-scale geochemical survey of soil O and C horizon samples in Nord-Trøndelag, Central Norway: Geology and mineral potential[J]. Applied Geochemistry, 2014,61:192-205.
[37] Mann A, Reimann C, Caritat P D, et al. Mobile Metal Ion analysis of European agricultural soils: Bioavailability, weathering, geogenic patterns and anthropogenic anomalies[J]. Geochemistry-Exploration Environment Analysis, 2015,15:99-112.
[38] Clark J R, Meier A L, Riddle G. Enzyme leaching of surficial geochemical samples for detecting hydromorphic trace-element anomalies associated with precious-metal mineralized bedrock beneath glacial overburden in northern Minnesota[J]. Center for Integrated Data Analytics Wisconsin Science Center, 1990,19:189-207.
[39] Clark J R. Detection of bedrock-related geochemical anomalies at the surface of transportd overburden[J]. Discover Our Resources, 1992,76:4-11.
[40] Clark J R. Enzyme-induced leaching of B-horizon soils for mineral exploration in areas of glacial overburden[J]. Applied Earth Science:Transactions of the Institution of Mining and Metallurgy Section B, 1993: 19-29.
[41] Clark J R. Innovative enzyme leach provides cost-effective overburden penetration[C] //Townsville:Extended Abstracts, 17th IGES, 1995.
[42] Clark J R. Unique significant enzyme leach anomaly patterns in areas of tropical-subtropical weathering[C] //Kingston:Queen's Univ. Conf. Proc., 1996.
[43] Clark J R. Concepts and models for the interpretation of enzyme leach data for mineral and petroleum exploration[G]//Enzyme leach: Model, Sampling Protocol and Case Histories. Ontario:Activation Laboratories, 1997.
[44] 雷斯 Ю. 地电化学勘探法[M].张肇元,崔霖沛,译. 北京: 地质出版社, 1986.
[44] Reis Ю. Geoelectrochemical exploration[M]. Beijing: Geological Publishing House, 1986.
[45] Govett G J S. Soil conductive assessment of an electro-chemical technique[J]. J. Geochem. Explor., 1974,14(1-3):101-118.
[46] 费锡铨. 电提取离子法在几个矿区的试验结果[J]. 物探与化探, 1984,8(3):162-165.
[46] Fei X Q. The result of experiment with method ofpartial metal extraction in several mining areas[J]. Geophysical and Geochemical Exploration, 1984,8(3):162-165.
[47] 罗先熔, 杨晓. 地电化学测量找寻隐伏矿的研究及找矿预测地质与勘探[J]. 地质与勘探, 1989,25(12):43-51.
[47] Luo X R, Yang X. Geoelectrochemical survey to find hidden ore research and prospecting prediction geology and prospecting[J]. Geology and Exploration, 1989,25(12):43-51.
[48] 罗先熔, 王桂琴, 杜建波, 等. 锑矿地电化学异常特征、成晕机制及找矿预测[J]. 地质与勘探, 2002,38(2):59-62.
[48] Luo X R, Wang G Q, Du J B, et al. The geoelectrochemical anomaly feature mechanisn and finded ore extrapolate for stibium deposit[J]. Geology and Exploration, 2002,38(2):59-62.
[49] 康明, 罗先熔. 地电化学方法的改进及应用效果[J]. 地质与勘探, 2003,39(5):63-66.
[49] Kang M, Luo X R. Improvement and applied results of geoelectrical chemistry methods[J]. Geology and Exploration, 2003,39(5):63-66.
[50] 康明, 岑况, 罗先熔. 低电压偶极子供电方式下的“偶极CHIM”应用效果[J]. 地质与勘探, 2006,42(4):81-85.
[50] Kang M, Cen K, Luo X R. Application of "dipole chim" electrified by low voltage dipole[J]. Geology and Exploration, 2006,42(4):81-85.
[51] 孙彬彬, 刘占元, 周国华. 固体载体型元素提取器研制[J]. 物探与化探, 2011,35(3):375-378.
[51] Sun B B, Liu Z Y, Zhou G H. The development of the solid carrier elements extractor[J]. Geophysical and Geochemical Exploration. 2011,35(3):375-378.
[52] 孙彬彬, 刘占元, 周国华. 地电化学方法技术研究现状及发展趋势[J]. 物探与化探, 2015,39(1):16-21.
[52] Sun B B, Liu Z Y, Zhou G H. Research status and development trends for geoelectrochemical methods[J]. Geophysical and Geochemical Exploration, 2015,39(1):16-21.
[53] Wang X Q. Leaching of mobile form metals in overburden:Development and applications[J]. J. Geochem. Explor., 1998,61:39-55.
[54] 卢荫庥, 白金峰. 元素活动态测量的分析方法[J]. 物探与化探, 2000,24(1):28-33.
[54] Lu Y X, Bai J F. The analytical technique for determination of active state elements[J]. Geophysical and Geochemical Exploration, 2000,24(1):28-33.
[55] Chao T T. Use of partial dissolution techniques in geochemical exploration[J]. Journal of Geochemical Exploration, 1984,20:101-125.
[56] 白金峰, 卢荫庥. 活动态测量中滤材的选择及其应用[J]. 物探与化探. 2001,25(4):272-278.
[56] Bai J F, Lu Y X. Selection and application of filter material in the measurement of active state[J]. Geophysical and Geochemical Exploration, 2001,25(4):272-278.
[57] 白金峰, 卢荫庥, 文雪琴. 金的活动态分析方法及其应用[J]. 物探与化探, 2006,30(5):410-413.
[57] Bai J F, Lu Y X, Wen X Q. The analytical method for mobile forms of gold and its application[J]. Geophysical and Geochemical Exploration, 2006,30(5):410-413.
[58] 徐进力, 邢夏, 张鹏鹏, 等. 元素活动态提取条件和分析方法的应用研究[J]. 地质学报, 2020,94(3):982-990.
[58] Xu J L, Xin X, Zhang P P, et al. Application research on extraction conditions and analysis methods of active state elements[J]. Acta Geologica Sinica, 2020,94(3):982-990.
[59] 李通国, 朱永新, 李文胜, 等. 深穿透地球化学方法找金——以甘南草甸覆盖区为例[J]. 地质与勘探, 2005,41(1):51-55.
[59] Li T G, Zhu Y X, Li W S, et al. The geochemical prospecting method of deep penetration in the southern Gansu area[J]. Geology and Exploration, 2005,41(1):51-55.
[60] 陈希泉, 罗先熔, 文雪琴. 内蒙古额尔古纳虎拉林金矿区金属元素活动态测量法找矿试验[J]. 矿产与地质, 2006,20(4-5):475-478.
[60] Chen X Q, Luo X R, Wen X Q. Experiment of applying active phase metal elements for ore prospecting in Hulalin gold ore field of[J]. Mineral Resources and Geology, 2006,20(4-5):475-478.
[61] Wang M Q, Wu H, Liao Y, et al. Pilot study of partial extraction geochemistry for base metal exploration in a thick loess-covered region[J]. Journal of Geochemical Exploration, 2015,148:231-240.
[62] 王光辉, 尹金双. 铀元素活动态技术在寻找砂岩型铀矿中的应用[J]. 物探与化探, 2000,24(5):358-362.
[62] Wang G H, Yin J S. The application of mobile-state uranium technique to the prospecting for sandstone type uranium deposits[J]. Geophysical and Geochemical Exploration, 2000,24(5):358-362.
[63] 叶庆森. 元素活动态测量法及其在铀矿勘查中的应用前景[J]. 铀矿地质, 2001,17(5):289-294.
[63] Ye Q S. Determination of mobile forms of elements in overburden and itsapplication prospect in uranium exploration[J]. Uranium Geology, 2001,17(5):289-294.
[64] 叶庆森, 杨尚海, 杨建新. 元素活动态测量法在鄂尔多斯盆地砂岩型铀矿勘查中的应用[J]. 地质通报, 2005,24(10-11):1008-1012.
[64] Ye Q S, Yang S H, Yang J X. Application of the method of determination of element mobile forms in exploration for sandstone-type uranium deposits in the Ordos basin, China[J]. Geological Bulletin of China, 2005,24(10-11):1008-1012.
[65] 叶庆森, 唐智源, 肖嗓, 等. 活动态U、MO测量在SHTL地区砂岩型铀矿勘查中的应用[J]. 世界核地质科学, 2006,23(2):114-117.
[65] Ye Q S, Tang Z Y, Xiao S, et al. Application of determining U, Mo in mobile forms to exploration for sandstone-type uranium deposits, SHTL area, China[J]. World Nuclear Geoscience, 2006,23(2):114-117.
[66] 王学求, 程志中, 迟清华, 等. 吐哈盆地砂岩性铀矿战略性地球化学调查与评价[J]. 地质与勘探, 2002,3(10):148-157.
[66] Wang X Q, Cheng Z Z, Chi Q H, et al. Geochemical exploration for sandstone-type uranium deposits in the Turpan-Hami basin[J]. Geology and Exploration, 2002,3(10):148-157.
[67] 张卫民. 元素活动态测量技术在勘查层间氧化带砂岩型铀矿中的应用———以新疆准格尔盆地北部顶山地区为例[J]. 地质与勘探, 2002,38(6):59-62.
[67] Zhang W M. Technology in the oxidation zone sandstone-type uranium exploration between the layers of the element mobile:Xinjiang Jungar Basin, the northern top of the mountain area as an example[J]. Geology and Exploration, 2002,38(6):59-62.
[68] 葛祥坤, 尹金双, 范光, 等. 分量化探法在铀资源勘查中的应用[J]. 铀矿地质, 2013,29(1):47-51.
[68] Ge X K, Yin J S, Fan G, et al. Application of partial content geochemical survey method in uranium exploration[J]. Uranium Geology, 2013,29(1):47-51.
[1] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[2] 阙泽胜, 李冠超, 胡颖, 简锐敏, 刘兵. 基于GIS的土壤环境放射性水平和风险评价[J]. 物探与化探, 2023, 47(5): 1336-1347.
[3] 姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
[4] 任蕊, 张志敏, 王晖, 陈继平, 乔新星, 梁东丽. 陕西关中土壤富硒标准研究与探讨——以小麦为例[J]. 物探与化探, 2023, 47(5): 1354-1360.
[5] 田强国, 侯进凯, 杨在伟, 李立园. 河南省洛阳市土壤硒全量、有效性及形态分布特征[J]. 物探与化探, 2023, 47(5): 1371-1378.
[6] 袁玉婷, 刘雪敏, 王学求, 谭亲平. 硫、铅同位素对地表土壤微细粒金属全量测量异常的示踪——以水银洞卡林型隐伏金矿体为例[J]. 物探与化探, 2023, 47(4): 1083-1097.
[7] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[8] 多吉卫色, 次仁旺堆, 尼玛洛卓, 周鹏, 尼玛次仁. 西藏白朗县农田系统硒含量特征及影响因素[J]. 物探与化探, 2023, 47(4): 1118-1126.
[9] 包凤琴, 成杭新, 永胜, 周立军, 杨宇亮. 包头南郊农田土壤环境质量特征及农作物健康风险评价[J]. 物探与化探, 2023, 47(3): 816-825.
[10] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[11] 赵玉岩, 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹. 农田土壤—植物系统中钒的迁移富集规律[J]. 物探与化探, 2023, 47(3): 835-844.
[12] 胡梦颖, 张鹏鹏, 徐进力, 刘彬, 张灵火, 杜雪苗, 白金峰. CEC前处理系统—凯氏定氮仪快速测定土壤中的阳离子交换量[J]. 物探与化探, 2023, 47(2): 458-463.
[13] 张亚峰, 姬丙艳, 沈骁, 姚振, 马强, 王帅, 贺连珍, 韩伟明. 西宁盆地咸水湖相沉积型富硒土壤的形成机理及意义[J]. 物探与化探, 2023, 47(2): 470-476.
[14] 李世宝, 杨立国, 熊万里, 马志超, 袁宏伟, 段吉学. 内蒙古巴彦淖尔市临河区富硒耕地硒形态特征及其影响因素[J]. 物探与化探, 2023, 47(2): 477-486.
[15] 包凤琴, 成杭新, 永胜, 杨宇亮, 马志超, 赵丽娟. 土默特左旗农田土壤环境质量综合评价及特色农业开发建议[J]. 物探与化探, 2023, 47(2): 487-495.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com