Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (1): 133-139    DOI: 10.11720/wtyht.2021.1001
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究
梁立锋1(), 刘秀娟1(), 张宏兵2, 陈程浩1, 陈锦华1
1.岭南师范学院 地理系,广东 湛江 524057
2.河海大学 地球科学与工程学院,江苏 南京 210098
A study of the effect of hyperparameters GRU-CNN hybrid deep learning EI inversion
LIANG Li-Feng1(), LIU Xiu-Juan1(), ZHANG Hong-Bing2, CHEN Cheng-Hao1, CHEN Jin-Hua1
1. Department of Geography,Lingnan Normal University,Zhanjiang 524057,China
2. School of Earth Science and Engineering,Hohai University,Nanjing 210098,China
全文: PDF(2494 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

CNN-GRU混合深度学习反演弹性阻抗取得了较好的反演效果。但是,基于深度学习的叠前反演参数众多,包括内部深度学习网络可学习参数和外部超参数等,目前超参数选取对网络性能及计算速度影响尚缺乏系统性研究,这直接影响到了该方法的进一步推广应用。因此,本文在混合深度学习反演弹性阻抗基础上,探讨学习率、Epoch、batch_size、正则化参数及参与网络训练的测井个数等5个超参数对网络性能及计算速度的影响,为深度学习地震反演超参数选取提供依据。研究结果可为三维大面积深度学习反演提供一个可行的质控手段,对于推动深度学习方法在石油物探中广泛应用具有一定意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁立锋
刘秀娟
张宏兵
陈程浩
陈锦华
关键词 超参数门控循环单元卷积神经网络混合深度学习弹性阻抗    
Abstract

Previous studies have shown that CNN-GRU hybrid deep learning inversion EI has the advantages of strong applicability and strong generalization capability.However,there are many pre-stack inversion parameters based on deep learning,such as internal deep learning network learnable parameters and external hyperparameters.At present,there is still no systematic research on the impact of hyperparameter selection on network performance and computing speed,which will directly affect the further promotion and application of the method.Therefore,based on the hybrid deep learning inversion elastic impedance,this paper discusses the impact of five hyperparameters,i.e.,learning rate,Epoch,batch_size,regularization parameter,and the number of wells participating in network training on network performance and calculation speed,thus providing a basis for studying the selection of seismic inversion hyperparameters.The research results can provide a feasible quality control method for three-dimensional large-area deep learning inversion,which is of certain significance for promoting the wide application of deep learning methods in petroleum geophysical prospecting.

Key wordssuper-parameter    gate recurrent unit    convolutional neural network    mixed deep learning    elastic impedance
收稿日期: 2020-01-02      修回日期: 2020-11-12      出版日期: 2021-02-20
ZTFLH:  P631.4  
基金资助:广东省教育厅基金项目(2019KTSCX089);岭南师范学院人才专项(ZL1936);岭南师范学院科研项目(LY1912,LP2036)
通讯作者: 刘秀娟
作者简介: 梁立锋(1978-),男,博士,讲师,工程师,主要研究方向为地震反演与深度学习。Email:121436068@qq.com
引用本文:   
梁立锋, 刘秀娟, 张宏兵, 陈程浩, 陈锦华. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1): 133-139.
LIANG Li-Feng, LIU Xiu-Juan, ZHANG Hong-Bing, CHEN Cheng-Hao, CHEN Jin-Hua. A study of the effect of hyperparameters GRU-CNN hybrid deep learning EI inversion. Geophysical and Geochemical Exploration, 2021, 45(1): 133-139.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1001      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I1/133
Fig.1  Marmorsi2模型时间域地震剖面(局部)
Fig.2  卷积深度学习与混合深度学习反演效率效果对比
a—反演结果对比;b—耗时对比;c—相关系数对比
Fig.3  Batch-size对相关系数(a)及计算时间(b)的影响
Fig.4  参与训练的井数对相关系数(a)、计算时间(b)的影响
Fig.5  相同超参数情况下GPU运算与CPU运算耗时比较
Fig.6  轮次(Epoch)与相关系数(a)、计算耗时(b)的关系
Fig.7  正则化参数α与相关系数(a)、计算耗时(b)关系
Fig.8  学习率曲线及改进方法
a—余弦学习率曲线;b—常数学习率与余弦学习率损失曲线对比
[1] 王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020,44(2):394-400.
[1] Wang Y C, Liu L T, Xu H Z. The identification of gravity anomaly body based on the convolutional neural network[J]. Geophysical and Geochemical Exploration, 2020,44(2):394-400.
[2] Russakovsky O, Deng J, Su H, et al. Image net large scale visual recognition challenge[J]. Int. J. Comput. Vis., 2015,115(3):211-252.
doi: 10.1007/s11263-015-0816-y
[3] 王文强, 孟凡顺, 孙文亮. 优化卷积神经网络在道编辑中的应用[J]. 地球物理学进展, 2019,34(1):214-220.
[3] Wang W Q, Meng F S, Sun W L. Application of optimized convolutional neural network in Dao editing[J]. Progress in Geophysics, 2019,34(1):214-220.
[4] 韩卫雪, 周亚同, 池越. 基于深度学习卷积神经网络的地震数据随机噪声去除[J]. 石油物探, 2018,57(6):862-869,877.
[4] Han W X, Zhou Y T, Chi Y. Deep learning convolutional neural networks for random noise attenuation in seismic data[J]. Geophysical Prospecting for Petroleum, 2018,57(6):862-869,877.
[5] 刘力辉, 陆蓉, 杨文魁. 基于深度学习的地震岩相反演方法[J]. 石油物探, 2019,58(1):123-129.
[5] Liu L H, Lu R, Yang W K. Seismic rock inversion method based on deep learning[J]. Geophysical Prospecting for Petroleum, 2019,58(1):123-129.
[6] 林年添, 付超, 张栋, 等. 无监督与监督学习下的含油气储层预测[J]. 石油物探, 2018,57(4):601-610.
[6] Lin N T, Fu C, Zhang D, et al. Prediction of petroleum reservoirs under unsupervised and supervised learning[J]. Geophysical Prospecting for Petroleum, 2018,57(4):601-610.
[7] Wu X M, Shi Y Z, Fomel S, et al. Fault net 3D:Predicting fault probabilities,strikes,and dips with a single convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019,57(11):9138-9155.
doi: 10.1109/TGRS.36
[8] Alfarraj M, AlRegib G. SEG technical program expanded abstracts 2018[M]. Houston:Society of Exploration Geophysicists, 2018: 2141-2146.
[9] 安鹏, 曹丹平, 赵宝银, 等. 基于LSTM循环神经网络的储层物性参数预测方法研究[J]. 地球物理学进展, 2019,34(5):1849-1858.
[9] An P, Cao D P, Zhao B Y, et al. Research on prediction method of reservoir physical property parameters based on LSTM recurrent neural network[J]. Progress in Geophysics, 2019,34(5):1849-1858.
[10] 张东晓, 陈云天, 孟晋. 基于循环神经网络的测井曲线生成方法[J]. 石油勘探与开发, 2018,45(4):598-607.
[10] Zhang X D, Chen Y T, Meng J. Logging curve generation method based on cyclic neural network[J]. Petroleum Exploration and Development, 2018,45(4):598-607.
[11] 汤梦, 朱杰. 一种基于LSTM的合成语音自然度评价方法的研究[J]. 信息技术, 2019,43(5):41-44.
[11] Tang M, Zhu J. Research on an evaluation method of naturalness of synthesized speech based on LSTM[J]. Information Technology, 2019,43(5):41-44.
[12] 卢鹏飞, 须成杰, 张敬谊, 等. 基于SARIMA-LSTM的门诊量预测研究[J]. 大数据, 2019,5(6):101-110.
[12] Lu P F, Xu C J, Zhang J Y, et al. Research on outpatient forecast based on SARIMA-LSTM[J]. Big Data Research, 2019,5(6):101-110.
[13] Alfarraj M, AlRegib G.Semisupervised sequence modeling for elastic impedance inversion[J]. Interpretation, 2019,7(3):237-249.
[14] 邓帅. 基于改进贝叶斯优化算法的CNN超参数优化方法[J]. 计算机应用研究, 2019,36(7):1984-1987.
[14] Deng S. Hyper-parameter optimization of CNN based on improved Bayesian optimization algorithm[J]. Application Research of Computers, 2019,36(7):1984-1987.
[15] Smith L N. Cyclical learning rates for training neural networks[C]// 2017 IEEE Winter Conference on Applications of Computer Vision (WACV),IEEE, 2017: 464-472.
[16] Breuel T M. The effects of hyperparameters on SGD training of neural networks[EB/OL]. Computer Science, 2015. [2015-08-12]. https://arxiv.org/abs/150802788.
[17] Martin G S, Wiley R, Marfurt K J. Marmousi2:An elastic upgrade for marmousi[J]. The Leading Edge, 2006,25:156-166.
doi: 10.1190/1.2172306
[1] 周慧, 孙成禹, 刘英昌, 蔡瑞乾. 基于DC-UNet卷积神经网络的强噪声压制方法[J]. 物探与化探, 2023, 47(5): 1288-1297.
[2] 肖张波, 雷永昌, 于骏清, 吴琼玲, 杨超群. 基于宽频资料的扩展弹性阻抗反演方法在陆丰22洼陷低勘探区古近系岩性预测中的应用[J]. 物探与化探, 2022, 46(2): 392-401.
[3] 郝亚炬, 高君. 基追踪弹性阻抗反演识别含气砂岩[J]. 物探与化探, 2020, 44(6): 1329-1335.
[4] 王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2): 394-400.
[5] 时磊, 刘俊州, 董宁, 王箭波, 夏红敏, 王震宇. 扩展弹性阻抗反演技术在致密砂岩薄储层含气性预测中的应用[J]. 物探与化探, 2015, 39(2): 346-351.
[6] 苏世龙, 贺振华, 戴晓云, 王九拴, 张辉, 辛华刚, 刘艳娜. 岩性油气藏地震保幅处理技术及其应用——以东部某油田岩性气藏为例[J]. 物探与化探, 2015, 39(1): 54-59.
[7] 孙瑞莹, 印兴耀, 王保丽, 张广智. 基于Metropolis抽样的弹性阻抗随机反演[J]. 物探与化探, 2015, 39(1): 203-210.
[8] 杨海长, 李智, 徐建永, 周玉. 叠前反演在LHK地区烃类检测中的应用[J]. 物探与化探, 2011, 35(5): 666-670,688.
[9] 孙歧峰, 白清云. 转换横波阻抗的求取[J]. 物探与化探, 2011, 35(1): 93-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com