Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (1): 1-10    DOI: 10.11720/wtyht.2021.1237
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
干旱荒漠区综合物化探方法寻找铜多金属矿
龚胜平1,2(), 陆桂福1, 席明杰1, 马生明1, 苏文利1
1.中国地质科学院 地球物理地球化学勘查研究所, 河北 廊坊 065000
2.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
The application of integrated geophysical and geochemical methods to the prospecting of copper polymetallic deposits in the arid desert area
GONG Sheng-Ping1,2(), LU Gui-Fu1, XI Ming-Jie1, MA Sheng-Ming1, SU Wen-Li1
1. Institute of Geophysical and Geochemical Exploration,CAGS, Langfang 065000, China
2. School of Geophysics and Information Technology, China University of Geocsiences, Beijing 100083, China
全文: PDF(4612 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了研究在干旱荒漠区矿产检查工作中的有效物化探方法组合,实现地区找矿突破,以内蒙古黑鹰山地区某矿产检查调查区为例,探寻物化探方法寻找铜多金属矿的工作方法技术。调查区开展了1∶1万地质测量、大功率激电、高精度磁测及1∶5万热磁组分土壤测量面积工作。通过数据处理,圈定了2处激电异常和5处磁异常,区内也出现具有多元素组合异常特征的化探异常。在激电异常与元素异常浓集部位布置了可控源音频大地电磁测深剖面,确定了两个良导异常向下展布情况。探槽结果显示:在公婆泉组钠长阳起岩夹变质石英砂岩和大理岩接触处发生强烈硅化、矽卡岩化和孔雀石化;探槽样品中,多个样品中的Cu、Ag含量达到边界品位。区内找矿前景良好,可以开展进一步工作。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚胜平
陆桂福
席明杰
马生明
苏文利
关键词 干旱荒漠区综合方法多金属矿内蒙古    
Abstract

In order to study the combination of effective geophysical and geochemical prospecting methods in mineral inspection work in arid desert areas and to achieve regional mineral prospecting breakthroughs, the authors conducted the mineral survey work in an arid desert area in the Heiyingshan area of Inner Mongolia. Geophysical and geochemical methods were used in search for copper polymetallic deposits. Geological survey, high-power IP, high-precision magnetic survey at a scale of 1∶10 000 and thermomagnetic component soil measurement (1∶50 000) were carried out in the survey area. IP anomalies and magnetic anomalies were delineated, and characteristics of multi-element combination were revealed after data processing. The controllable source audio magnetotelluric sounding profiles were arranged in the locations of the IP anomalies and the anomaly concentration places of the elements to determine the downward distribution of the two high conductivity anomalies. The trench reveals that strong silicification, skarnization and malachite mineralization occur at the contact zone between the albite-actinolite-schist mixed with metamorphic quartz sandstone in the Gongpoquan Formation and the marble. The content of Cu and Ag in the samples reaches the boundarygrade. The ore-search prospects in the survey area are good and further work should be carried out.

Key wordsarid desert area    integrated method    polymetallic deposit    Inner Mongolia
收稿日期: 2020-04-30      修回日期: 2020-09-05      出版日期: 2021-02-20
ZTFLH:  P632  
基金资助:中国地质调查局项目“重要金属非金属矿产地质调查计划”(DD20190571);国家重点研发计划项目(2018YFE0208300);中国地质调查局项目“基础性公益性地质矿产调查”(121201108000150002)
作者简介: 龚胜平(1980-),男,汉族,湖北人,博士研究生,高级工程师。研究方向:地球物理勘查。Email:gsp122012@126.com
引用本文:   
龚胜平, 陆桂福, 席明杰, 马生明, 苏文利. 干旱荒漠区综合物化探方法寻找铜多金属矿[J]. 物探与化探, 2021, 45(1): 1-10.
GONG Sheng-Ping, LU Gui-Fu, XI Ming-Jie, MA Sheng-Ming, SU Wen-Li. The application of integrated geophysical and geochemical methods to the prospecting of copper polymetallic deposits in the arid desert area. Geophysical and Geochemical Exploration, 2021, 45(1): 1-10.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1237      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I1/1
Fig.1  调查区地质图与工作布置
1—中粒石英闪长岩;2—细粒角闪辉长岩;3—上奥陶统-下志留统公婆泉组一段变粒岩;4—第四系全新统砂砾石、粉砂、细砂;5—第四系全新统冲洪积物;6—白垩系赤金堡组含砾粗砂土;7—细粒二长花岗岩;8—中粒花岗闪长岩;9—青灰色闪长玢岩脉;10—肉红色细粒钾长花岗岩;11—花岗细晶岩;12—细粒二长花岗岩脉;13—细粒花岗闪长岩;14—细粒正长花岗岩;15—细粒花岗斑岩脉;16—石英脉;17—大理岩;18—变粒岩;19—钠长阳起片岩;20—矽卡岩化;21—岩相界线;22—断裂构造;23—调查区范围;24—物化探测点;25—褐铁矿化;26—铜锌矿化点;27—探槽位置及编号
岩石名称 样品数 电阻率/(Ω·M) 极化率/% 磁化率/(10-6 SI)
常见值 变化范围 常见值 变化范围 常见值 变化范围
钠长阳起片岩 29 3315.9 205.2~13949.4 2.02 0.97~3.0 37355.2 85.7~91341.7
角闪辉长岩 30 3727.6 1023.6~28174.4 2.0 1.14~4.29 7260.0 294.0~42323.7
石英闪长岩 30 6581.6 1393.3~11322.5 0.7 0.4~2.3 3466.7 176.2~13904.6
二长花岗岩 30 1706.4 778.4~7123.4 2.68 1.15~4.63 116.6 0.9~1434.2
花岗闪长岩 21 1804.9 757.1~7927.2 3.01 0.92~4.05 1095.2 52.1~4695.1
正长花岗岩 12 2004.9 1161.1~3815.7 2.7 1.8~4.1 92.6 2.9~203.7
闪长玢岩 10 7429.2 2209.1~11228.2 2.3 0.8~3.0 102.2 88.1~363.2
钾长花岗岩 30 700.0 435.0~2481.9 2.5 1.8~3.5 202.5 36.4~696.1
大理岩 36 989.8 830.5~1455.5 0.12 0.05~0.19 3.70 1.0~9.7
斜长角闪岩(绿帘石化) 32 95.3 80.2~9991.2 2.0 0.61~3.45 552.2 359.5~7579.3
斜长角闪岩(黄铁矿化) 35 1220.5 571.0~2068.2 2.25 2.25~3.01 471.7 179.0~455.0
Table 1  岩矿石物性统计
Fig.2  激电中梯测量视电阻率(a)与视充电率(b)等值线平面
a—视电阻率平面图;b—视充电率平面图;构造为地质实测,地球物理色标仅应用于调查区范围内,地质背景图例见图1,图3~6同
Fig.3  磁异常化极等值线平面
Fig.4  磁异常向上延拓200 m等值线平面
Fig.5  470线(a)、370线(b)综合电法勘查剖面及推断解译
Fig.6  地球化学异常剖析
元素 异常面积/km2 平均值/10-6 最高值/10-6 异常下限/10-6 异常衬值 NAP值 异常点数/个
Au 1.76 5.40×10-3 23.2×10-3 1.50×10-3 3.60 6.3 7
Ag 2.82 0.21 0.94 0.06 3.50 9.9 10
Cu 1.04 163 586 34.1 4.78 5.0 5
Pb 1.96 28.0 108 14.4 1.94 3.8 9
Zn 0.48 95.9 127 60.0 1.59 0.8 6
As 1.45 9.50 31.3 3.00 3.16 4.6 6
Sb 3.07 3.47 36.8 0.24 14.46 44.4 13
W 1.81 3.25 14.1 0.91 3.57 6.5 9
Sn 1.88 2.80 12.0 1.50 1.87 3.5 10
Mo 2.47 3.54 27.8 0.76 4.65 11.5 13
Cd 2.35 277×10-3 1030×10-3 91.0×10-3 3.04 7.1 11
Table 2  地球化学异常参数统计
刻槽样品号 分析结果/10-6 边界品位/10-6
Cu Zn Ag
TC02-07 1449 162 Cu:2000
TC02-11 1017 215 Ag:40~50
TC02-13 1014 999 Zn:5000
TC02-15 1083 1856
TC02-36 1210 133
TC02-38 2236 124
TC05-03 2210 47.7
TC05-18 1926 138
TC05-19 2202 183
TC06-01 2068 121 28.48
TC06-02 3324 195 49.57
TC06-03 2444 240 15.59
Table 3  调查区刻槽样分析结果
[1] 刘涛涛, 戴朝成, 王新亮. 内蒙古中部乌拉山地区富铝片麻岩的地球化学特征和原岩建造[J]. 科学技术与工程, 2016,16(30):1671-1815.
[1] Liu T T, Dai C C, Wang X L. Geochemical characteristics and protolithformation of Al-rich gneisses in Wulashanarea, central Inner Mongolia[J]. Science Technology and Engineering, 2016,16(30):1671-1815.
[2] 赵海超, 张金玲, 刘彩乐, 等. 青海省夏日哈木铜镍钴硫化物矿床找矿模型[J]. 科学技术与工程, 2018,18(36):166-174.
[2] Zhao H C, Zhang J L, Liu C L, et al. Copper-Nickel-Cobalt sulfide deposit prospecting model of Xiarihamu in Qinghai Province[J]. Science Technology and Engineering, 2018,18(36):166-174.
[3] 陈化奇, 李永庆. 岩屑测量方法在干旱荒漠区的找矿效果——以贺兰山北段嘎拉斯台白钨矿的发现为例[J]. 物探与化探, 2019,43(1):55-63.
[3] Chen H Q, Li Y Q. The prospecting effect of rock debris measurement method in arid desert area: Exemplified by the discovery of the Galasitai scheelite deposit in northern Helanmountain[J]. Geophysical and Geochemical Exploration, 2019,43(1):55-63.
[4] 李立新, 李百祥. 物探在甘肃铅锌矿产找矿中的作用和效果[J]. 甘肃地质, 2014,23(4):63-68.
[4] Li L X, Li B X. Role of geophysical prospecting played in prospecting Pb-Zn mineral resources in Gansu Province[J]. Gansu Geology, 2014,23(4):63-68.
[5] 成秋明. 覆盖区矿产综合预测思路与方法[J]. 地球科学:中国地质大学学报, 2012,37(6):1109-1125.
[5] Cheng Q M. Ideas and methods for mineral resources integrated prediction in covered areas[J]. Earth Science:Journal of China University of Geosciences, 2012,37(6):1109-1125.
[6] 戚志鹏, 李貅, 钱建兵, 等. 电法联合解释在覆盖区矿产勘查中的应用[J]. 地球科学:中国地质大学学报, 2012,37(6):1199-1208.
[6] Qi Z P, Li X, Qian J B, et al. Application of electrical joint interpretation method in mineral exploration of coverage areas[J]. Earth Science:Journal of China University of Geosciences, 2012,37(6):1199-1208.
[7] 魏永强, 胡明考, 刘士凯, 等. 新型AGRSS航空伽马能谱测量系统在甘肃礼县地区铀及多金属矿产勘查中的应用效果[J]. 地球物理学进展, 2017,32(6):2677-2686.
[7] Wei Y Q, Hu M K, Liu S K, et al. Application effect of new airborne gamma ray spectrometry system on uranium and polymetallic deposit prospecting in Lixian of Gansu Province[J]. Progress in Geophysics, 2017,32(6):2677-2686.
[8] 龚胜平, 丁卫忠, 王明明, 等. 相位激发极化法在多宝山矿产远景调查中的应用效果[J]. 物探化探计算技术, 2013,35(5):524-529.
[8] Gong S P, Ding W Z, Wang M M, et al. The application effect of phase-IP method in Duobaoshan perspective survey[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2013,35(5):524-529.
[9] 黄桂珍. 荒漠戈壁覆盖区的矿产勘查技术探讨[J]. 资源环境与工程, 2014,28(1):69-73.
[9] Huang G Z. Over view of new prospecting methods of gobi-over burden area[J]. Resources Environment & Engineering, 2014,28(1):69-73.
[10] 孟贵祥, 庄道泽, 王为江. 西部戈壁荒漠区大极距激电找矿试验分析[J]. 地球学报, 2006,27(2):175-180.
[10] Meng G X, Zhuang D Z, Wang W J. Experimental analysis of the long-space induced polarization method in the gobi-desert area of western China[J]. Acta Geoscientica Sinica. 2006,27(2):175-180.
[11] 张先年, 徐遂勤, 刘海军. 大功率激电中梯在某金矿勘查中的应用[J]. 科学技术与工程, 2010,10(26):6511-6514.
[11] Zhang X N, Xu S Q, Liu H J. Application of high-power IP intermediate gradient method in a prospecting project of an Au-ore district[J]. Science Technology and Engineering, 2010,10(26):6511-6514.
[12] 谢学锦, 王学求. 深穿透地球化学新进展[J]. 地学前缘, 2003,10(1):225-238.
[12] Xie X J, Wang X Q. Recent developments on deep-penetrating geochemistry[J]. Earth Science Frontiers, 2003,10(1):225-238.
[13] 牛洪斌, 李绪善, 徐家乐, 等. 物化探技术进步及其在甘肃地质勘查中的应用[J]. 甘肃地质, 2016,25(3):20-26.
[13] Niu H B, Li X S, Xu J L, et al. The technical progress of geophysical and geochemical exploration and their applications in Gansu Province[J]. Gansu Geology, 2016,25(3):20-26.
[14] 李荣亮, 田建荣, 刘洋, 等. 综合物探方法在甘肃梧桐井铁铜多金属矿勘查中的应用[J]. 地质与勘探, 2017,53(4):755-764.
[14] Li R L, Tian J R, Liu Y, et al. Application of integrated geophysical methods to exploration in the Wutongjing Iron-Copper polymetallicdeposit of Gansu Province[J]. Geology and Exploration, 2017,53(4):755-764.
[15] 柳建新, 郭振威, 童孝忠, 等. 地面高精度磁法在新疆哈密地区磁铁矿勘查中的应用[J]. 地质与勘探, 2011,47(3):432-438.
[15] Liu J X, Guo Z W, Tong X Z, et al. Application of the ground high-precision magnetic method to magnetite survey in the Hamiarea, Xinjiang[J]. Geology and Exploration, 2011,47(3):432-438.
[16] 李文明, 杨生飞, 全守村, 等. 内蒙古月牙山地区地球化学异常特征及找矿远景预测[J]. 矿产勘查, 2017,8(1):101-111.
[16] Li W M, Yang S F, Quan S C, et al. Characteristics of geochemical anomalies and prospecting prognosis of Yueyashan area,Inner Mongolia[J]. Mineral Exploration, 2017,8(1):101-111.
[17] 张江苏, 王滔, 毛艳丽, 等. 甘肃省南部矿集区水系沉积物测量地球化学特征及找矿预测[J]. 科学技术与工程, 2016,16(29):121-133.
[17] Zhang J S, Wang T, Mao Y L, et al. Geochemical characteristics of stream sediments and metallogenic prognosis of southern ore-concentration area, Gansu Province[J]. Science Technology and Engineering, 2016,16(29):121-133.
[18] 张波, 滕汉仁, 胥溢. 甘肃南部大水金矿矿集区磁异常特征及找矿分析[J]. 物探与化探, 2018,42(5):917-924.
[18] Zhang B, Teng H R, Xu Y. A discussion on the characteristics of magnetic anomaly and ore-prospecting orientation in Dashui gold concentration area of south Gansu Province[J]. Geophysical and Geochemical Exploration, 2018,42(5):917-924.
[19] Gong S P, Yang Y B, Lin P R , et al. Three-dimensional electrical exploration methods for the mapping of Polymetallic targets in Gansu Province, China[J]. Geophysical Prospecting, 2019,67(7):1929-1947.
doi: 10.1111/gpr.v67.7
[20] 龚胜平, 杨亚斌, 张光之, 等. 三维时间域激发极化法探测花牛山铅锌矿的试验研究[J]. 科学技术与工程, 2018,18(18):16-24.
[20] Gong S P, Yang Y B, Zhang G Z, et al. Experimental study on 3D time-domain electromagnetic exploration in Huaniushan Pd-Zn deposit[J]. Science Technology and Engineering, 2018,18(18):16-24.
[21] 席明杰, 马生明, 胡树起, 等. 内蒙古准苏吉花铜钼矿区土壤热磁组分地球化学异常特征及意义[J]. 物探化探计算技术, 2014,10(1):125-137.
[21] Xi M J, Ma S M, Hu S Q, et al. Characteristics and significances of soil thermomagnetic components geochemical anomalies of the Zhunsujihua copper-molybdenum deposit in Inner Mongolia[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014,10(1):125-137.
[22] 马生明, 朱立新. 热液成因有色金属矿多维异常体系——以马头斑岩型钼铜矿为例[J]. 吉林大学学报:地球科学版, 2014,44(1):134-144.
[22] Ma S M, Zhu L X. Multi-dimensional anomaly system for hydrothermal nonferrous metal deposits: Taking the Matou porphyry molybdenum copper mine in Anhui province as an example[J]. Journal of Jilin University:Earth Science Edition, 2014,44(1):134-144.
[1] 杨星, 管育春, 邹滔, 李伟. 综合土壤和重砂测量在内蒙古扎鲁特旗坤得来扎拉格地区锡多金属找矿中的应用[J]. 物探与化探, 2023, 47(4): 868-880.
[2] 游越新, 邓居智, 陈辉, 余辉, 高科宁. 综合物探方法在云南澜沧老厂多金属矿区深部找矿中的应用[J]. 物探与化探, 2023, 47(3): 638-647.
[3] 冯军, 蒋文, 张征. 新疆维权银铜多金属矿地质—地球物理找矿模式及成矿模型[J]. 物探与化探, 2022, 46(4): 868-876.
[4] 庞文静, 陈贝贝, 周涛, 黄柔睿, 周云云, 郭福生, 吴志春, 谢财富. 相山矿田与冷水坑矿田多金属成矿特征对比[J]. 物探与化探, 2021, 45(6): 1416-1424.
[5] 窦备, 张必敏, 叶荣, 迟清华. 黄土覆盖区隐伏矿地球化学勘查技术试验研究——以河南中河堤银铅锌多金属矿为例[J]. 物探与化探, 2021, 45(4): 933-941.
[6] 梁新强, 乔占华, 闫强, 王亮, 李建锋, 刘晓辉, 王淼. 物探方法在复兴屯银铅锌多金属矿区构造与成矿机理研究中的应用[J]. 物探与化探, 2021, 45(2): 323-336.
[7] 梁维天, 孙新胜, 王东波, 冯家新, 孙文, 陈广镇. 广域电磁法在河洼多金属矿勘查中的应用[J]. 物探与化探, 2020, 44(5): 1048-1052.
[8] 孟月玥, 陈岳龙. 内蒙古地区出露地壳元素丰度估算[J]. 物探与化探, 2020, 44(3): 470-479.
[9] 李帅, 孙彬彬, 文美兰, 吴超, 贺灵, 曾道明, 成晓梦, 温银维. 内蒙古洛恪顿铅锌多金属矿区1:5万地电化学测量试验[J]. 物探与化探, 2020, 44(3): 514-522.
[10] 龚晶晶, 杨剑洲, 马生明, 苏磊. 利用因子分析和分形分析识别内蒙古黑鹰山地区矿致地球化学异常[J]. 物探与化探, 2020, 44(1): 122-131.
[11] 王振亮, 邓友茂, 孟银生, 刘瑞德. 综合物探方法在维拉斯托铜多金属矿床北侧寻找隐伏矿体的应用[J]. 物探与化探, 2019, 43(5): 958-965.
[12] 毕炳坤, 常云真, 施强, 申随水. 综合物探在崤山东部浅覆盖区勘查银多金属矿床中的应用[J]. 物探与化探, 2019, 43(5): 976-985.
[13] 马一行, 颜廷杰, 何鹏, 刘祖鉴, 苏航, 郭硕. 激发极化法在覆盖区矿产勘查中的应用——以内蒙古昌图锡力锰银铅锌多金属矿勘查为例[J]. 物探与化探, 2019, 43(4): 709-717.
[14] 徐明钻, 黄岩, 刘建生, 刘建东, 梁胜跃, 陈峰, 王军成. 航空时间域电磁法在澳大利亚新英格兰造山带铜多金属矿靶区优选与评价中的应用[J]. 物探与化探, 2019, 43(2): 298-307.
[15] 薛生升, 张双奎, 赵楠, 周新鹏, 靳职斌. 五台—恒山地区多金属矿远景区预测及找矿方向[J]. 物探与化探, 2019, 43(1): 46-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com