Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (5): 991-998    DOI: 10.11720/wtyht.2020.1570
  广域电磁勘探技术应用专栏 本期目录 | 过刊浏览 | 高级检索 |
广域电磁法在武陵山区页岩气勘探中的探索应用——以黔北桐梓地区为例
李帝铨1,2,3(), 汪振兴1,2,3, 胡艳芳1,2,3, 王涵1,2,3, 苏煜堤1,2,3
1.中南大学 地球科学与信息物理学院,湖南 长沙 410083
2.有色金属成矿预测与地质环境监测教育部重点实验室(中南大学),湖南 长沙 410083
3.有色资源与地质灾害探测湖南省重点实验室,湖南 长沙 410083
The application of wide field electromagnetic method to shale gas exploration in Wuling Mountain area: A case study of Tongzi area in northern Guizhou
LI Di-Quan1,2,3(), WANG Zhen-Xing1,2,3, HU Yan-Fang1,2,3, WANG Han1,2,3, SU Yu-Di1,2,3
1.School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
2.Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University), Ministry of Education, Changsha 410083, China
3.Key Laboratory of non-ferrous and geological hazard detection, Changsha 410083, China
全文: PDF(4513 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

武陵山区具备巨大的页岩气资源潜力,但该区地质构造复杂,地形起伏剧烈,大面积碳酸盐岩出露,油气勘探不适于使用以地震勘探为主的传统物探方法。 本次采用广域电磁法在黔北桐梓地区开展页岩气勘探,克服了地形、碳酸盐岩和构造复杂的影响,查明了桐梓地区从EN—WS呈“凹隆相间”的构造格局,落实了目的层五峰—龙马溪组的空间展布特征,圈定出4处页岩气勘探有利区,有望助力实现武陵山区页岩气勘探开发由点到面的突破。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李帝铨
汪振兴
胡艳芳
王涵
苏煜堤
关键词 广域电磁法页岩气武陵山区五峰—龙马溪组    
Abstract

After the major breakthrough in oil and gas was obtained from the Well Anye 1, the Ministry of Natural Resources increased the residual shale gas and oil and gas exploration and development of 7,800 square kilometers in the Wuling Mountain. The Wulong Mountain area has complex geological structures, undulating terrain and large areas of carbonate rock, which has led to great challenges to traditional oil and gas exploration methods based on seismic exploration. Wide field electromagnetic method has the characteristics of green, high efficiency and low cost, and hence has become one of the powerful methods for oil and gas exploration and is now being widely used in shale gas exploration in southern China. It is a favorable method for shale gas exploration in southern China. The strata in Tongzi Guizhou are relatively stable, and the organic carbon content in the upper Ordovician Wufeng-Lower Silurian Longmaxi Formation is high. Through surface sample collection and well logging data analysis, the organic shale in this formation shows obvious low resistivity characteristics, which has the physical conditions of electromagnetic exploration. The wide field electromagnetic method was used to carry out shale gas exploration in Tongzi area of northern Guizhou, which overcame the complex influence of topography, carbonate rocks and structure. It is found that the structure pattern of Tongzi area is characterized by "depression and uplift" from northeast to southwest. The spatial distribution characteristics of the Wufeng-Longmaxi Formation in the target layer were detected, and four favorable areas for shale gas exploration were delineated. The prediction of shale gas exploration target area by wide area electromagnetic method is expected to help realize the breakthrough of shale gas exploration and development from point to surface in Wuling Mountain area and promote the development of clean energy industry along the river.

Key wordswide field electromagnetic method    shale gas    Wuling Mountain area    Wufeng-Longmaxi Formation
收稿日期: 2019-12-06      出版日期: 2020-10-26
:  P631  
基金资助:国家重点研发计划项目(2018YFC0807802);国家自然科学基金面上项目(41874081)
作者简介: 李帝铨(1982-),男,教授,博士生导师,主要从事有关电磁法探测理论与技术的教学与研究工作。 Email: lidiquan@csu.edu.cn
引用本文:   
李帝铨, 汪振兴, 胡艳芳, 王涵, 苏煜堤. 广域电磁法在武陵山区页岩气勘探中的探索应用——以黔北桐梓地区为例[J]. 物探与化探, 2020, 44(5): 991-998.
LI Di-Quan, WANG Zhen-Xing, HU Yan-Fang, WANG Han, SU Yu-Di. The application of wide field electromagnetic method to shale gas exploration in Wuling Mountain area: A case study of Tongzi area in northern Guizhou. Geophysical and Geochemical Exploration, 2020, 44(5): 991-998.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1570      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I5/991
Fig.1  工区测线布置示意
Fig.2  工区场源布置示意
Fig.3  地层标本电阻率测量统计
Fig.4  电阻率测井曲线
地层 主要岩性 范围/(Ω·m) 平均值/(Ω·m) 电性特征
茅口组(P1m) 灰岩 15.2~99 909.2 8 853.1 高阻
栖霞组(P1q) 灰岩、灰色黏土岩 8.6~15 714.7 2 074.4 高阻
韩家店组(S1h) 页岩、泥质砂岩、碎屑灰岩 11.3~176.1 39.7 低阻
小河坝组(S1x) 泥质石英粉砂岩夹页岩 17.9~88.1 29.1 低阻
龙马溪组(S1l) 泥质灰岩、钙质页岩互层、灰黄色页岩、黑色炭质页岩 4.4~96.8 25.2 低阻
五峰组(O3w) 泥质灰岩、黑色炭质页岩 7.1~73. 1 21.7 低阻
临湘组(O3l) 泥质灰岩 99.8~3 345.1 926.7 中高阻
宝塔组(O2b) 龟裂纹灰岩 606.6~4 595.7 1 661.1 高阻
十字铺组(O2sh) 微粒灰岩、泥质灰岩 987.5~8 080.6 2 212.1 高阻
Table 1  五峰—龙马溪组及围岩电阻率数值统计
Fig.5  L6线原始数据曲线(a)与拟地震剖面(b)
Fig.6  L6线等频率视电阻率曲线
Fig.7  L6线反演断面(a)和地震解释剖面(b)
Fig.8  L6线地质解释剖面
Fig.9  丁页3井五峰组—龙马溪组含气量与TOC(a)及视电阻率(b)的关系
Fig.10  勘探区目的层电阻率(a)、埋深(b)、综合有利区预测结果(c)
[1] 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004,7(9):15-18,131-132.
[1] Zhang J C, Jin Z J, Yuan M S. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004,7(9):15-18,131-132.
[2] 李建忠, 吴晓智, 郑民, 等. 常规与非常规油气资源评价的总体思路、方法体系与关键技术[J]. 天然气地球科学, 2016,27(9):1557-1565.
doi: 10.11764/j.issn.1672-1926.2016.09.1557
[2] Li J Z, Wu X Z, Zheng M, et al. General philosophy,method system and key technology of conventional and unconventional oil & gas resource assessment[J]. Natural Gas Geoscience, 2016,27(9):1557-1565.
doi: 10.11764/j.issn.1672-1926.2016.09.1557
[3] 董大忠, 王玉满, 李新景, 等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业, 2016,36(1):19-32.
[3] Dong D Z, Wang Y M, Li X J, et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016,36(1):19-32.
[4] 彭安钰. 贵州黔北地区页岩气的勘探前景[J]. 中国石油和化工标准与质量, 2017,37(10):67-69.
[4] Peng A Y. Prospects for shale gas exploration in Qianbei area of Guizhou[J]. China Petroleum and Chemical Standards and Quality, 2017,37(10):67-69.
[5] 张鹏, 张金川, 雷怀玉, 等. 黔北安页1井区松坎组沉积环境及其对页岩气成藏的影响[J]. 资源与产业, 2018,20(3):34-41.
[5] Zhang P, Zhang J C, Lei H Y, et al. Sedimentary environment and its influence on shale gas accumulation of Songkan formation of Anye-1 well district in northern Guizhou[J]. Resources & Industries, 2018,20(3):34-41
[6] 滕吉文, 刘有山. 中国油气页岩分布与存储潜能和前景分析[J]. 地球物理学进展, 2013,28(3):1083-1108.
doi: 10.6038/pg20130301
[6] Teng J W, Liu Y S. Analysis of diatribution storage potential and prospect for shale oil and gas in China[J]. Progress in Geophysics, 2013,28(3):1083-1108.
doi: 10.6038/pg20130301
[7] 张本杰, 韩忠勤, 张伟, 等. 贵州五峰组—龙马溪组页岩气研究进展[J]. 天然气技术与经济, 2017,11(6):19-23.
[7] Zhang B J, Han Z Q, Zhang W, et al. Research on shale gas of Wufeng-Longmaxi formation, Guizhou Province[J]. Natural Gas Technology and Economy, 2017,11(6):19-23.
[8] 闫剑飞. 黔北地区上奥陶统五峰组—下志留统龙马溪组黑色岩系页岩气富集条件与分布特征[D]. 成都:成都理工大学, 2017.
[8] Yan J F. The shale gas accumulation conditions and distribution characteristics of black shales in the Upper Ordovician Wufeng formation—Lower Silurian Longmaxi formation of northern Guizhou[D]. Chengdu: Chengdu University of Technology, 2017.
[9] 张乔勋, 李帝铨, 田茂军. 广域电磁法在赣南某盆地油气勘探中的应用[J]. 石油地球物理勘探, 2017,52(5):1085-1092.
[9] Zhang Q X, Li D Q, Tian M J. Application of wide field electromagnetic method to the hydrocarbon exploration in a basin of South Jiangxi[J]. OGP, 2017,52(5):1085-1092.
[10] 李帝铨, 胡艳芳. 强干扰矿区中广域电磁法与CSAMT探测效果对比[J]. 物探与化探, 2015,39(5):967-972.
doi: 10.11720/wtyht.2015.5.15
[10] Li D Q, Hu Y F. A comparison of wide field electromagnetic method with CSAMT method in strong interferential mining area[J]. Geophysical and Geochemical Exploration, 2015,39(5):967-972.
doi: 10.11720/wtyht.2015.5.15
[11] 何继善. 广域电磁测深法研究[J]. 中南大学学报:自然科学版, 2010,41(3):1065-1072.
[11] He J S. Wide field electromagnetic sounding methods[J]. Journal of Central South University:Science and Technology , 2010,41(3):1065-1072.
[12] 何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.
[12] He J S. Wide field electromagnetic method and pseudorandom signal electrical method [M]. Beijing: Higher Education Press, 2010.
[13] 刘树根, 马文辛, LUBA Jansa, 等. 四川盆地东部地区下志留统龙马溪组页岩储层特征[J]. 岩石学报, 2011,27(8):2239-2252.
[13] Liu S G, Ma W X, Luba J, et al. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation,East Sichuan basin,China[J]. Acta Petrologica Sinica, 2011,27(8):2239-2252.
[14] 尹福光, 许效松, 万方, 等. 加里东期上扬子区前陆盆地演化过程中的层序特征与地层划分[J]. 地层学杂志, 2002(4):315-319.
[14] Yin F G, Xu X S, Wan F, et al. Characteristic of seqence and stratigraphical division in evolution of upper yangtze region during Caledonian[J]. Journal of Stratigraphy, 2002(4):315-319.
[15] 索光运, 李帝铨, 胡艳芳. 基于解析雅克比矩阵的E-Ex广域电磁法一维并行约束反演[J]. 物探化探计算技术, 2019,41(1):55-61.
[15] Suo G Y, Li D Q, Hu Y F. One-dimension parallel constrained inversion of E-Ex wide field electromagnetic method based on analytical Jacobian matrix[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019,41(1):55-61.
[1] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[2] 李帝铨, 肖教育, 张继峰, 胡艳芳, 刘最亮, 张新. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5): 1359-1366.
[3] 朱云起, 李帝铨, 王金海. 基于MySQL的广域电磁法数据处理与解释软件[J]. 物探与化探, 2021, 45(4): 1030-1036.
[4] 欧居刚, 王小兰, 杨晓, 邓小江, 黄诚, 李文佳. 水平井地震导向技术探索与应用——以四川盆地复杂地区页岩气井为例[J]. 物探与化探, 2021, 45(3): 551-559.
[5] 刘昊娟. 地应力地震预测及其在南川页岩气开发中的应用[J]. 物探与化探, 2021, 45(3): 560-568.
[6] 张勇, 马晓东, 李彦婧, 蔡景顺. 深度学习在南川页岩气含气量预测中的应用[J]. 物探与化探, 2021, 45(3): 569-575.
[7] 刘伟男, 张超谟, 朱林奇, 胡松, 孔政, 邓瑞. 页岩气水平井TOC测井评价新方法[J]. 物探与化探, 2021, 45(2): 423-431.
[8] 危志峰, 陈后扬, 吴西全. 广域电磁法在宜春某地地热勘查中的应用[J]. 物探与化探, 2020, 44(5): 1009-1018.
[9] 詹少全, 李爱勇, 王导丽, 郝红蕾, 王磊. 极寒环境中广域电磁法勘探技术研究[J]. 物探与化探, 2020, 44(5): 1019-1024.
[10] 田红军, 尹文斌, 刘光迪, 蒋永芳, 游文兵. 广域电磁法在低阻覆盖区的应用与评价——以河南中牟为例[J]. 物探与化探, 2020, 44(5): 1025-1030.
[11] 曾何胜, 徐元璋, 刘磊, 唐宝山, 张祎然, 李义, 陈宇峰. 广域电磁法在复杂电磁干扰环境的应用研究——以某市周边地热勘查为例[J]. 物探与化探, 2020, 44(5): 1031-1038.
[12] 王洪军, 熊玉新. 广域电磁法在胶西北金矿集中区深部探测中的应用研究[J]. 物探与化探, 2020, 44(5): 1039-1047.
[13] 梁维天, 孙新胜, 王东波, 冯家新, 孙文, 陈广镇. 广域电磁法在河洼多金属矿勘查中的应用[J]. 物探与化探, 2020, 44(5): 1048-1052.
[14] 王洪军, 田红军, 贺春艳, 刘光迪. 多种物探方法在胶西北金矿集中区深部勘探的效果分析[J]. 物探与化探, 2020, 44(5): 1053-1058.
[15] 王永兵, 尹文斌, 张磊. 航空广域电磁法初步探索[J]. 物探与化探, 2020, 44(5): 1059-1065.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com