Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (5): 1239-1244    DOI: 10.11720/wtyht.2020.1562
  生态环境调查 本期目录 | 过刊浏览 | 高级检索 |
浙西水田土壤镉形态与有效性研究
刘道荣(), 周漪
中化地质矿山总局浙江地质勘查院,浙江 杭州 310002
Speciation characteristics and bioavailability of cadmium in paddy soils, western Zhejiang Province
LIU Dao-Rong(), ZHOU Yi
Zhejiang Geological Prospecting Institute of China Chemical Geology and Mine Bureau, Hangzhou 310002, China
全文: PDF(635 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

土壤镉(Cd)的生物有效性受多种因素影响,化学形态分布是决定其有效性的重要因素。为查明浙西水稻土Cd的生物有效性,分析土壤形态Cd与稻谷Cd含量关系,采集了32个田块土壤样及其中15个田块水稻样品,测试了土壤pH值、Cd总含量及各形态Cd含量和稻谷Cd含量,讨论了不同酸碱度及成土母质条件下土壤Cd形态分布特征及其生物有效性,研究了稻谷Cd含量与土壤不同形态Cd含量的相关性。结果表明,研究区水稻土Cd以离子交换态为主(约占全量的35%),水溶态Cd含量最小(约占全量的1%),其他形态Cd介于二者之间。酸性(pH 5.0~<6.5)条件下,土壤中离子交换态Cd含量最高,Cd生物有效性也最高。不同母质形成的土壤Cd形态分布特征不同,灰岩类风化物形成的土壤Cd形态分布特征与其他成母质区土壤差异明显,不同母质区的Cd污染应采取不同的治理措施。相关分析表明,稻谷Cd含量与土壤离子交换态Cd含量呈极显著相关性(P<0.01),而与其他形态Cd相关性不显著。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘道荣
周漪
关键词 形态分析水稻土生物有效性    
Abstract

The bioavailability of cadmium (Cd) in soil is affected by many factors, while the morphological distribution characteristic is one of the important factors. In order to find out the bioavailability of Cd in paddy soil in western Zhejiang Province and analyze the relationship between the forms of Cd in soil and Cd content in rice grains, the authors collected and analyzed 32 samples of paddy soil and 15 samples of paddy rice. First, the morphological distribution characteristics and biological characteristics of Cd in soil under different pH and parent materials conditions were discussed. And then, by linear correlation analysis, the correlation between the Cd content in rice and different forms of Cd in soil was studied.The results show that Cd in paddy soil is mainly in the form of ion exchange (about 35% of the total amount), and the content of water soluble Cd is the least (about 1% of the total amount), with other forms of Cd in between. Under acidic condition (pH 5.0~6.5), both of the ion-exchange Cd and the bioavailability of Cd are the highest.The morphological distribution characteristics of Cd in soil between the weathered limestone and the other parent materials are quite different.Varying measures should be taken to control the Cd pollution in different parent material areas. The correlation analysis shows that there is a significant correlation between the Cd content of rice and the ion-exchange Cd content (P<0.01), but the correlation with other forms of Cd is not obvious.

Key wordscadmium    speciation analysis    paddy soil    bioavailability
收稿日期: 2019-11-29      出版日期: 2020-10-26
:  P593  
  X171.5  
基金资助:中化地质矿山总局项目“土地质量调查与污染防治团队建设计划”
作者简介: 刘道荣(1982-),男,正高级工程师,主要从事地质与农业地质研究工作。Email: liudaorong0@163.com
引用本文:   
刘道荣, 周漪. 浙西水田土壤镉形态与有效性研究[J]. 物探与化探, 2020, 44(5): 1239-1244.
LIU Dao-Rong, ZHOU Yi. Speciation characteristics and bioavailability of cadmium in paddy soils, western Zhejiang Province. Geophysical and Geochemical Exploration, 2020, 44(5): 1239-1244.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1562      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I5/1239
指标 土壤样品(n=32) 水稻(n=15)
总Cd F1 F2 F3 F4 F5 F6 F7 pH 稻谷Cd
最大值 13.0 0.091 8.200 1.980 0.800 1.730 0.640 0.610 7.66 3.513
最小值 0.23 0.001 0.047 0.006 0.025 0.025 0.022 0.015 4.58 0.016
平均值 1.71 0.013 0.705 0.292 0.163 0.245 0.107 0.101 5.37 0.740
标准偏差 2.76 0.020 1.516 0.596 0.218 0.368 0.117 0.111 0.76 1.010
变异系数/% 161.60 148.04 215.09 204.36 133.32 149.91 109.99 110.19 14.15 136.47
Table 1  土壤全量Cd、各形态Cd含量、pH及稻谷Cd含量
Cd形态 F1 F2 F3 F4 F5 F6 F7 合计
形态分布百分率/% 1.06 34.96 10.45 11.65 15.34 11.20 11.16 95.82
Table 2  土壤Cd不同形态分布
Fig.1  不同pH条件下土壤各形态Cd比例
Fig.2  不同母质条件下土壤各形态Cd比例
R2—河漫滩相沉积物;Q4—全新世洪冲积物;Ca3—灰岩类风化物;Ca2—泥质灰岩类风化物;C5—炭质硅质岩类风化物;C1—泥页岩类风化物
Cd形态 F1 F2 F3 F4 F5 F6 F7
r 0.473 0.690** 0.189 0.296 0.080 0.301 0.370
Table 3  土壤中不同形态Cd与稻谷Cd含量的相关性(n=15)
[1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[N]. 中国国土资源报, 2014-04-18(002).
[1] Ministry of Environmental Protection, Ministry of Land and Resources. Bulletin of national soil pollution survey[N]. China Land and Resources News, 2014-04-18(002).
[2] 王梦梦, 何梦媛, 苏德纯. 稻田土壤性质与稻米镉含量的定量关系[J]. 环境科学, 2018,39(4):1918-1925.
[2] Wang M M, He M Y, Su D C. Quantitative relationship between paddy soil properties and cadmium content in rice grains[J]. Environmental Science, 2018,39(4):1918-1925.
[3] 朱智伟, 陈铭学, 牟仁祥, 等. 水稻镉代谢与控制研究进展[J]. 中国农业科学, 2014,47(18):3633-3640.
[3] Zhu Z W, Chen M X, Mou R X, et al. Advances in research of cadmium metabolism and control in rice plants[J]. Scientia Agricultural Sinica, 2014,47(18):3633-3640.
[4] Chen H M, Zheng C R. Heavy metal pollution in soils in China:Status and countermeasures[J]. Ambio, 1999,28(2):130-134.
[5] 宗良纲, 徐晓炎. 水稻对土壤中镉的吸收及其调控措施[J]. 生态学杂志, 2004,23(3):120-123.
[5] Zong L G, Xu X Y. Cadmium absorption of rice from soils and remediations[J]. Chinese Journal of Ecology, 2004,23(3):120-123.
[6] 肖振林, 王果, 黄瑞卿, 等. 酸性土壤中有效态镉提取方法研究[J]. 农业环境科学学报, 2008,27(2):795-800.
[6] Xiao Z L, Wang G, Huang R Q, et al. Extraction method for available cadmium in acid soils[J]. Journal of Agro-environment Science, 2008,27(2):795-800.
[7] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979,51(7):844-851.
[8] 陈学诚, 董文庚, 郎志敏, 等. A.Tessier逐级提取程序应用于土镉形态研究的可靠性[J]. 环境科学, 1991,12(6):25-28,36.
[8] Chen X C, Dong W G, Lang Z M, et al. Reliability of Tessier’s fractional extraction procedure for cadmium species in soil[J]. Environmental Science, 1991,12(6):25-28,36.
[9] 朱亮, 邵孝侯. 耕作层中重金属Cd形态分布规律及植物有效性研究[J]. 河海大学学报, 1997,25(3):50-56.
[9] Zhu L, Shao X H. Chemical form distribution and plant availability of Cd in plough horizon[J]. Journal of Hohai University, 1997,25(3):50-56.
[10] 崔妍, 丁永生, 公维民, 等. 土壤中重金属化学形态与植物吸收的关系[J]. 大连海事大学学报, 2005,31(2):59-63.
[10] Cui Y, Ding Y S, Gong W M, et al. Study on the correlation between the chemical forms of the heavy metals in soil and the metal uptake by plant[J]. Journal of Dalian Maritime University, 2005,31(2):59-63.
[11] 周国华. 土壤重金属生物有效性研究进展[J]. 物探与化探, 2014,38(6):1097-1106.
doi: 10.11720/wtyht.2014.6.01
[11] Zhou G H. Recent progress in the study of heavy metal bioavailability in soil[J]. Geophysical and Geochemical Exploration, 2014,38(6):1097-1106.
doi: 10.11720/wtyht.2014.6.01
[12] 张季惠, 王黎虹, 张建奎. 土壤中镉的形态转化、影响因素及生物有效性研究进展[J]. 广东农业科学, 2013(6):169-171.
[12] Zhang J H, Wang L L, Zhang J K. Transformation and influence factors of existing form of cadmium in soils and its effect on cadmium bioavailability[J]. Guangdong Agricultural Sciences, 2013(6):169-171.
[13] 喻华, 秦鱼生, 陈琨, 等. 水稻土镉形态分布特征及其生物效应研究[J]. 西南农业学报, 2017,30(2):452-457.
[13] Yu H, Qin Y S, Chen K, et al. Distribution characteristics of cadmium forms and its correlation with biological effect in paddy soil[J]. Southwest China Journal of Agricultural Sciences, 2017,30(2):452-457.
[14] 王昌全, 代天飞, 李冰, 等. 稻麦轮作下水稻土重金属形态特征及其生物有效性[J]. 生态学报, 2007,27(3):889-897.
[14] Wang C Q, Dai T F, Li B, et al. The speciation and bioavailability of heavy metals in paddy soils under the rice-wheat cultivation rotation[J]. Acta Ecologica Sinica, 2007(3):889-897.
[15] 李冰, 王昌全, 代天飞, 等. 水稻子实对不同形态重金属的累积差异及其影响因素分析[J]. 植物营养与肥料学报, 2007,13(4):602-610.
[15] Li B, Wang C Q, Dai T F, et al. Accumulation of heavy metals in rice seeds as influenced bymetal speciation and soil properties[J]. Plant Nutrition and Fertilizer Science, 2007,13(4):602-610.
[16] 周国华, 董岩翔, 张建明, 等. 浙江省农业地质环境调查评价方法技术[M]. 北京: 地质出版社, 2007.
[16] Zhou G H, Dong Y X, Zhang J M, et al. Methodology of evaluation on agro-geology environment survey in Zhejiang[M]. Beijing: Geological Publishing House, 2007.
[17] 黄涓, 刘昭兵, 谢运河, 等. 土壤中Cd形态及生物有效性研究进展[J]. 湖南农业科学, 2013(17):56-61.
[17] Huang J, Liu Z B, Xie Y H, et al. Progress of form and bioavailability of cadmium in soil[J]. Hunan Agricultural Sciences, 2013(17):56-61.
[18] DD 2005-03 生态地球化学评价样品分析技术要求(试行)[S].
[18] DD 2005-03 Technical requirements for analysis of eco geochemical evaluation samples (Trial)[S].
[19] DZ/T 0258-2014 多目标区域地球化学调查规范(1:250000)[S].
[19] DZ/T 0258-2014 Specification of multi-purpose regional geochemical survey(1:250000)[S].
[20] 邓朝阳, 朱霞萍, 郭兵, 等. 不同性质土壤中镉的形态特征及其影响因素[J]. 南昌大学学报:工科版, 2012,34(4):341-346.
[20] Deng Z Y, Zhu X P, Guo B, et al. Distribution and influence factors of Cd speciation on the soil with different properties[J]. Journal of Nanchang University:Engineering and Technology, 2012,34(4):341-346.
[21] 郝汉舟, 靳孟贵, 李瑞敏, 等. 耕地土壤铜、镉、锌形态及生物有效性研究[J]. 生态环境学报, 2010,19(1):92-96.
[21] Hao H Z, Jin M G, Li R M, et al. Fractionations and bioavailability of Cu, Cd and Zn in cultivated land[J]. Ecology and Environmental Sciences, 2010,19(1):92-96.
[22] 汪霞, 南忠仁, 武文飞, 等. 干旱区绿洲土壤中重金属的形态分布及生物有效性研究[J]. 生态环境学报, 2010,19(7):1663-1667.
[22] Wang X, Nan Z R, Wu W F, et al. Experiments on speciation and bioavailability of selected heavy metalsin arid oasis soil, northwest China[J]. Ecology and Environmental Sciences, 2010,19(7):1663-1667.
[23] 杜彩艳, 祖艳群, 李元. pH和有机质对土壤中镉和锌生物有效性影响研究[J]. 云南农业大学学报, 2005,20(4):539-544.
[23] Du C Y, Zu Y Q, Li Y. Effect of pH and organic matter on the bioavailability Cd and Zn in soil[J]. Journal of Yunnan Agricultural University, 2005,20(4):539-544.
[24] 秦余丽, 熊仕娟, 徐卫红, 等. 不同镉浓度及pH条件下纳米沸石对土壤镉形态及大白菜镉吸收的影响[J]. 环境科学, 2016,37(10):539-544.
[24] Qin Y L, Xiong S J, Xu W H, et al. Effect of nano zeolite on chemical fractions of Cd in soil and uptake by Chinese cabbage at different soil pH and cadmium levels[J]. Environmental Science, 2016,37(10):539-544.
[25] 冯佳蓓. 纳米羟基磷灰石对重金属污染农用土壤的修复研究[D]. 杭州:浙江大学, 2015.
[25] Fen J B. Research on heavy metal polluted agricultural soil remediation by nano-hydroxyapatite[D]. Hangzhou:Zhejiang University, 2015.
[1] 谢薇, 杨耀栋, 侯佳渝, 菅桂芹, 李国成, 赵新华. 天津蔬菜主产区土壤中镉的有效性及关键调控因子研究[J]. 物探与化探, 2020, 44(4): 855-862.
[2] 唐世琪, 万能, 曾明中, 杨柯, 刘飞, 彭敏, 李括, 杨峥. 恩施地区土壤与农作物硒镉地球化学特征[J]. 物探与化探, 2020, 44(3): 607-614.
[3] 周国华. 土壤重金属生物有效性研究进展[J]. 物探与化探, 2014, 38(6): 1097-1106.
[4] 喻超, 智云宝, 代杰瑞, 庞绪贵, 曾宪东, 王红晋, 王丽娟. 山东省威海市区域地质背景下土壤Cd的地球化学特征[J]. 物探与化探, 2014, 38(5): 1076-1084.
[5] 尹宗义, 王会锋, 任蕊, 彭立华, 晁旭, 卢婷, 王明霞. 陕西省石头河一带土壤及植物富硒特征[J]. 物探与化探, 2014, 38(2): 349-353.
[6] 潘自平, 谯文浪, 孟伟, 何邵麟, 李朝晋, 晏承志, 王芳. 贵阳市土壤中镉的赋存形态及其环境效应[J]. 物探与化探, 2013, 37(4): 737-742.
[7] 张伟, 张高强, 窦磊, 文俊. 广东省典型铅锌多金属矿床镉的分布特征[J]. 物探与化探, 2012, 36(4): 529-533.
[8] 魏然, 侯青叶, 杨忠芳, 尹国胜, 衷存堤, 邓国辉, 马逸麟. 江西省鄱阳湖流域根系土硒形态分析及其迁移富集规律[J]. 物探与化探, 2012, 36(1): 109-113.
[9] 陶春军, 周涛发, 李湘凌, 袁峰, 陈兴仁, 陈永宁, 贾十军, 陈富荣. 施磷对土壤中汞、铅吸附特性的影响 [J]. 物探与化探, 2010, 34(5): 655-658.
[10] 郦逸根, 徐静, 李琰, 宋明义, 翁祖山. 浙江富硒土壤中硒赋存形态特征[J]. 物探与化探, 2007, 31(2): 95-98,109.
[11] 叶伟何, 赖启宏. 广东某大城市汞污染特征[J]. 物探与化探, 2006, 30(5): 460-462.
[12] 赖启宏, 余海平, 李国平, 夏斌. 珠江三角洲土壤镉高含量区的化学形态特征[J]. 物探与化探, 2005, 29(4): 334-335,341.
[13] 任萍, 汪明启. 改进BCR法在分析水系沉积物样品铅形态中的应用[J]. 物探与化探, 2004, 28(3): 222-223,221.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com